Spelling suggestions: "subject:"självövervakat lärande"" "subject:"självövervakad lärande""
1 |
Self-supervised Learning for Efficient Object Detection / Självövervakat lärande för effektiv ObjektdetekteringBerta, Benjamin István January 2021 (has links)
Self-supervised learning has become a prominent approach in pre-training Convolutional Neural Networks for computer vision. These methods are able to achieve state-of-the-art representation learning with unlabeled datasets. In this thesis, we apply Self-supervised Learning to the object detection problem. Previous methods have used large networks that are not suitable for embedded applications, so our goal was to train lightweight networks that can reach the accuracy of supervised learning. We used MoCo as a baseline for pre-training a ResNet-18 encoder and finetuned it on the COCO object detection task using a RetinaNet object detector. We evaluated our method based on the COCO evaluation metric with several additions to the baseline method. Our results show that lightweight networks can be trained by self-supervised learning and reach the accuracy of the supervised learning pre-training. / Självledd inlärning har blivit ett framträdande tillvägagångssätt vid träning av ”Convolutional Neural Networks” för datorseende. Dessa metoder kan uppnå topp prestanda med representationsinlärning med omärkta datamängder. I det här examensarbetet tillämpar vi Självledd inlärning på objektdetekteringsproblemet. Tidigare metoder har använt stora nätverk som inte är lämpliga för inbyggda applikationer, så vårt mål var att träna lättviktsnätverk som kan nå noggrannheten av ett tränat nätverk. Vi använde MoCo som basnivå för träning av en ResNet-18-kodare och finjusterade den på COCO-objektdetekteringsuppgiften med hjälp av en RetinaNet-objektdetektor. Vi utvärderade vår metod baserat på COCO-utvärderingsmåttet med flera tillägg till baslinjemetoden. Våra resultat visar att lättviktsnätverk kan tränas genom självledd inlärning och uppnå samma precisionen som för ett tränat nätverk.
|
2 |
Evaluating the effects of data augmentations for specific latent features : Using self-supervised learning / Utvärdering av effekterna av datamodifieringar på inlärda representationer : Vid självövervakande maskininlärningIngemarsson, Markus, Henningsson, Jacob January 2022 (has links)
Supervised learning requires labeled data which is cumbersome to produce, making it costly and time-consuming. SimCLR is a self-supervising framework that uses data augmentations to learn without labels. This thesis investigates how well cropping and color distorting augmentations work for two datasets, MPI3D and Causal3DIdent. The representations learned are evaluated using representation similarity analysis. The data augmentations were meant to make the model learn invariant representations of the object shape in the images regarding it as content while ignoring unnecessary features and regarding them as style. As a result, 8 models were created, models A-H. A and E were trained using supervised learning as a benchmark for the remaining self-supervised models. B and C learned invariant features of style instead of learning invariant representations of shape. Model D learned invariant representations of shape. Although, it also regarded style-related factors as content. Model F, G, and H managed to learn invariant representations of shape with varying intensities while regarding the rest of the features as style. The conclusion was that models can learn invariant representations of features related to content using self-supervised learning with the chosen augmentations. However, the augmentation settings must be suitable for the dataset. / Övervakad maskininlärning kräver annoterad data, vilket är dyrt och tidskrävande att producera. SimCLR är ett självövervakande maskininlärningsramverk som använder datamodifieringar för att lära sig utan annoteringar. Detta examensarbete utvärderar hur väl beskärning och färgförvrängande datamodifieringar fungerar för två dataset, MPI3D och Causal3DIdent. De inlärda representationerna utvärderas med hjälp av representativ likhetsanalys. Syftet med examensarbetet var att få de självövervakande maskininlärningsmodellerna att lära sig oföränderliga representationer av objektet i bilderna. Meningen med datamodifieringarna var att påverka modellens lärande så att modellen tolkar objektets form som relevant innehåll, men resterande egenskaper som icke-relevant innehåll. Åtta modeller skapades (A-H). A och E tränades med övervakad inlärning och användes som riktmärke för de självövervakade modellerna. B och C lärde sig oföränderliga representationer som bör ha betraktas som irrelevant istället för att lära sig form. Modell D lärde sig oföränderliga representationer av form men också irrelevanta representationer. Modellerna F, G och H lyckades lära sig oföränderliga representationer av form med varierande intensitet, samtidigt som de resterande egenskaperna betraktades som irrelevant. Beskärning och färgförvrängande datamodifieringarna gör således att självövervakande modeller kan lära sig oföränderliga representationer av egenskaper relaterade till relevant innehåll. Specifika inställningar för datamodifieringar måste dock vara lämpliga för datasetet.
|
Page generated in 0.0631 seconds