• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogel therapy for re-synostosis based on the developmental and regenerative changes of murine cranial sutures

Hermann, Christopher Douglas 23 May 2012 (has links)
Craniosynostosis is the premature fusion of one or more cranial sutures in the developing skull. If left untreated, craniosynostosis can result in developmental delays, blindness, deafness, and other impairments resulting from an increase in the intracranial pressure. In many cases, the treatment consists of complex calvarial vault reconstruction with the hope of restoring a normal skull appearance and volume. Re-synostosis, the premature re-closure following surgery, occurs in up to 40% children who undergo surgery. If this occurs, a second surgery is needed to remove portions of the fused skull in an attempt to correct the deformities and/or relieve an increase in intracranial pressure. These subsequent surgeries are associated with an incredibly high incidence of life threatening complications. To address this unmet clinical need we have developed strategies to delay the post-operative bone growth in a clinically relevant murine model of re-synostosis. The overall objective of this thesis was to develop a hydrogel based therapy to delay rapid bone regeneration in a murine model of re-synostosis. The overall hypothesis was that delivery of key BMP inhibitors involved in regulating normal suture development and regeneration will delay the rapid bone growth that in seen in a pediatric murine model of re-synostosis. The overall approach is to use micro-computed tomography (µCT) to determine the time course of suture fusion and to identify genes associated with key developmental time points, to develop a pediatric specific mouse model that displays rapid re-synostosis, and lastly to develop a hydrogel based therapy to delay the re-synostosis of this cranial defect.

Page generated in 0.0387 seconds