• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 108
  • 29
  • 14
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • Tagged with
  • 351
  • 211
  • 109
  • 78
  • 66
  • 56
  • 55
  • 52
  • 51
  • 48
  • 48
  • 47
  • 45
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Performance Evaluation of New Corrugated-Type Embossments for Composite Deck

Shen, Grace Leewen 21 August 2001 (has links)
The purpose of this research is to evaluate the performance of new corrugated-type embossments developed by Vulcraft Research and Development for their 2VLI and 3VLI composite deck. Performance of deck with the proposed embossment types is compared with that of deck with the existing embossment type, resulting in the recommendation of which type to further investigate for production. The evaluation consists of uniformly loaded full-scale slab tests whose flexural strengths are compared with those given by different strength prediction methods that are alternatives to full-scale testing. The methods used in this study are the First Yield Method (Heagler 1992), the ASCE Appendix D Alternate Method (Standard 1992), and Widjaja's (1997) Iterative Method. Shear bond tests are also performed for deck with each embossment type to evaluate shear resistance specifically, and to provide shear bond data needed to perform the Iterative Method. / Master of Science
92

Developments in steel composite construction with precast hollowcore slabs

Lam, Dennis January 2005 (has links)
no
93

Improving efficiency and effectiveness in the design, manufacturing and construction of the beam and block slab systems

Khuzwayo, Bonga PraiseGod January 2015 (has links)
Submitted in fulfillment for the Master of Engineering, Department of Civil Engineering and Surveying, Durban University of Technology. Durban. South Africa, 2015. / Beam and block slab systems have become a preferred suspended flooring technology in South Africa. Their structural efficiency and relatively low cost makes them suitable for low to medium cost developments. Like all other structural components, they are required to demonstrate sound structural integrity. Concerns were raised by some manufacturers and users in Durban (South Africa) about (a) the lack of basic technical information which makes it difficult to identify methods of improving efficiency and effectiveness of these flooring systems in general, (b) the efficiency and effectiveness of concrete masonry rebated filler blocks - with respect to the load carrying capacity and protecting the structural topping from fire, (c) what constitutes acceptable quality of a deliberately roughened precast concrete surface, (d) interfacial tensile bond strength of special connections and (e) an alternative rib that can span 5 metres without temporary props. These issues were investigated by the student. Thus, this project aimed at improving the structural efficiency and effectiveness in designing, manufacturing and constructing beam and block slab systems was undertaken in Durban, South Africa, between 2012 and 2013. Pilot studies (involving questionnaires), interviews with manufacturers, site visits, and testing of non-structural and structural components were also undertaken. The first aim (in order to address concern (a)) was to provide users of beam and block slab systems with basic technical information about the possible ways to improve efficiency and effectiveness in the design, manufacturing and construction of beam and block slab systems by undertaking an exploratory (pilot) study to better understand users of these systems concerns. The second aim (to address concern (b)) was to investigate, by conducting a series of strength to weight ratio tests, how efficient or inefficient these filler blocks are, examine the structural integrity with respect to the integrity of the manufacturing methodologies and the product thereof, and formulate a method to quantify the fire-resistivity of concrete masonry rebated filler blocks to the structural topping with respect to confining fire. The third aim (to address concern (c)) was to determine what constituted acceptable quality of a deliberately roughened precast concrete surface through a literature review and by conducting a survey to learn about the construction methodologies used by manufacturers. Site visits were undertaken to validate information given by the contractors. The fourth aim (to address concern (d)) was to determine interfacial tensile bond strength through physical testing of deliberately roughened concrete ribs which are sometimes used in special connections. The fifth aim (to address the last concern (e)) was to make an assessment by undertaking a basic comparison study between one local beam and block slab system that uses a shallow rectangular precast pretensioned rib to beam and block slab systems used in the United Kingdom and propose an ideal section (precast pretensioned rib) that spans up to 5 metres without temporary props. With respect to the first aim, it was found that the lack of technical knowledge, including access to critical information about the design philosophy, manufacturing and construction standards of these flooring systems leads to reluctance in selecting them. The outcome of the second aim is that all concrete masonry rebated filler blocks tested were found to be effective because they supported more than the required construction load but some were shown to be inefficient as more materials, such as binders, are wasted in producing over-strength filler blocks and also, undertaking trial mix designs and the testing of samples prior to batch production will reduce costs. A method is formulated in the thesis that could also show that concrete masonry rebated filler blocks provide significant protection to the structural topping thereby preventing fire progression. With respect to the third aim, although a broom or brush is effective in providing a surface roughness (Rz) of 3 mm, it is not always efficient when considering factors like the variation in uniformity, appearance of laitance and roughening frequency, which are not addressed by the South African codes. The outcome of the fourth aim is that connections should be designed such that they do not rely purely on the tensile bond strength but through reinforcing bars (or ties) taking the full tension load causing delamination. With respect to the fifth aim, a basic comparison study indicates that T-section beams are more efficient than common rectangular ribs (±150 mm wide x ±60 mm deep) since they can eliminate completely the use of temporary props for spans of up to 4.51 m. Consequently, further research is underway to design an inverted T-section rib by using high strength precast pretensioned concrete that can span up to 5 m without using temporary props.
94

Construction in in-situ cast flat slabs using steel fibre reinforced concrete

Jarrat, Robert 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Fibre reinforced concrete (FRC) transforms concrete from a characteristically brittle material to one with a post-crack tensile residual capacity. Its application in industry has varied over the past of which the tensile properties have generally been used in the form of crack mitigation. More recently, the introduction of steel fibres has broadened this scope to structural applications in which the resisting tensile stresses that develop within a steel FRC (SFRC) element can be rather significant. This thesis reviews the existing practices and design models associated with SFRC and the suitability of its implementation as the sole form of reinforcement in in-situ cast flat slab systems. As a material SFRC is dependent on a number of factors which include the fibre type and volume, fibre distributions, element size, as well as the support and applied load conditions. Thus, its performance can be considered rather variable in comparison to conventional concrete should the incorrect practices be implemented. In order to adequately define the material characteristics, it is necessary to use test procedures that accurately reflect on the intended structural application. As a result a number of test procedures have been developed. In addition to this, the post-crack material performance is associated with a non-linear behaviour. This attribute makes the design of structural SFRC elements rather difficult. In an attempt to simplify this, existing design models define stress-strain or stress-crack width relations in which assumptions are made regarding the cross-sectional stress distribution at specified load states. This thesis takes on two parts in defining the suitability of SFRC as the sole form of reinforcement in flat slab systems. The first is a theoretical investigation regarding the micro and macro scale material performance of SFRC, the practices that exist in defining the material properties and its application in structural systems (particularly suspended slab systems), and a breakdown of the existing design models applicable to strain softening deflection hardening SFRC materials. The second part is an experimental program in which the fresh state and hardened state material properties of specified SFRC mix designs defined through flow and beam testing respectively. These properties are then implemented in the design and construction of full scale flexural and punching shear test slabs in an attempt to verify the theory applied. The investigation reveals that the use of SFRC significantly improves the ductility of concrete systems in the post-crack state through fibre crack bridging. This ductility can result in deflection hardening of flat slab systems in which the redistribution of stresses increases the load carrying capacity once cracking has taken place. However, the performance of large scale test specimens is significantly influenced by the construction practices implemented in which the material variability increases as a result of non-uniform fibre distributions. The results indicate that the load prediction models applied have potential to adequately predict the ultimate failure loads of SFRC flat slab systems but however cannot account for possible non-uniform fibre distributions which could result in premature failure of the system. / AFRIKAANSE OPSOMMING: Vesel versterkte beton (VVB) verander beton van die kenmerkende uiters bros material na ‘n material met ‘n residuele post-kraak trekkapasiteit. Die toepassing daarvan in die bedryf het in die verlede gewissel en die trek eienskappe is oor die algemeen gebruik vir kraak vermindering. Meer onlangs het die bekenstelling van staal vesel hierdie omvang verbreed na die strukturele toepassings waar trekspannings wat ‘n VVB element kan weerstaan noemenswaardig kan wees. Hierdie tesis ondersoek bestaande praktyke en ontwerpmodelle met die oog op staalvesel versterkte beton (SVVB) en die geskiktheid van die implementering daarvan as die enigste vorm van bekisting in in-situ gegiete plat blad stelsels. As ‘n materiaal, is SVVB afhanklik van ‘n aantal faktore wat die tipe vesel en volume, vesel verspreiding, element grootte, sowel as die randvoorwaardes tipe aangewende las insluit. As gevolg hiervan, kan die gedrag van SVVB, wat korrek geïmplimenteer word, as redelik varieerbaar beskou word wanneer dit met konvensionele beton vergelyk word. Ten einde die materiaaleienskappe voldoende te definieer, is dit noodsaaklik dat prosedures wat die strukturele toepassing akuraat voorstel, getoets word en daarom is ‘n aantal toets prosedures ontwikkel. Verder het die post-kraak materiaalgedrag ‘n nie-lineêre verband wat struktuurontwerp met SVVB redelik moeilik maak. Om dit te vereenvoudig, definieer bestaande ontwerpmodelle spanning-vervorming of spanning-kraakwydte verhoudings waarin aannames gemaak word ten opsigte van die spanningsverdeling oor ‘n snit, gegewe sekere lastoestande. Hierdie studie bestaan uit twee dele wat die geskiktheid van SVVB as die enigste vorm van bikisting in plat blad stelsels definieer. Die eerste deel bestaan uit ‘n teoretiese ondersoek wat handel oor die mikro- en makro-skaal materiaalgedrag van SVVB, die praktyke wat bestaan om die materiaaleienskappe en toepassing in strukturele sisteme (spesifiek opgelegde blad stelsels) te definieer, en ‘n uiteensetting van die bestaande ontwerpmodelle wat van toepassing is vir defleksie as gevolg van vervormingsversagting wat SVVB material verhard. Die tweede deel bestaan uit ‘n eksperimentele program waarin die materiaaleienskappe van gespesifiseerde SVVB meng-ontwerpe in die vars toestand en in die verharde toestand gedefinieer word deur middel van vloei- en balktoetse onderskeidelik. Hierdie eienskappe word dan toegepas vir die ontwerp en konstruksie van volskaalse buig- en ponsskuif toetsblaaie ten einde die modelle en teorie wat toegepas is, te bevestig. Die ondersoek toon dat die gebruik van SVVB die duktiliteit van beton sisteme noemenswaardig verbeter in die post-kraak toestand deur kraak oorbrugging. Hierdie duktiliteit kan defleksie verharding van plat blad stelsels veroorsaak waarin die herverdeling van spannings, nadat kraking plaasgevind het, die lasdraende kapasiteit verhoog. Die gedrag van die grootskaalse toetsmonsters word egter noemenswaardig beïnvloed deur die konstruksiemetodes wat geïmplementeer word waarin die materialveranderlikheid toeneem as ‘n gevolg van nie-uniforme vesel verdelings. Die resultate dui daarop dat die modelle wat toegepas is om die laste te voorspel, die potensiaal het om die grens falingslas van SVVB plat blad stelsel voldoende te voorspel, maar neem nie moontlike nie-uniforme veselverdelings wat kan lei tot vroeë faling van die stelsel in ag nie.
95

Deflections of reinforced concrete flat slabs

Eigelaar, Estee M. 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2010. / ENGLISH SUMMARY: It is found that the serviceability limit state often governs the design of slender reinforced concrete members. Slender flexural members often have a percentage tension reinforcement less than 1.0% and an applied bending moment just above the point of first cracking. For such members, the available methods to evaluate the serviceability conditions produce inadequate and unrealistic results. The evaluation of the serviceability of a slender member includes the calculation of the predicted deflection, either by empirical hand-calculation or analysing a finite element model, and the verification using the span-to-effective-depth ratio. The focus of the study is on flat slab structures. It investigates the different deflection prediction methods and the span-to-effective-depth ratio verifications from various design standards. These design standards include the ACI 318 (2002), the SABS 0100-1 (2000), the EC2 (2004) and the BS 8110 (1997). The background to the methods, as well as the parameters which influences the deflection development for lightly reinforced members, are investigated in order to define the limitations of the methods. As a result of the investigation of the deflection calculation methods, an Alternative Approach is suggested and included in the comparisons of the various methods. The deflection prediction methods and the span/effective depth verification procedures are accurately formulated to predict the serviceability behaviour of beams. Additional approaches had to be used to apply these methods to a two-dimensional plane such as that of a flat slab structure. The different deflection prediction methods and the span/effective depth verification methods are calculated and compared to the recorded data of seven experimental flat slab specimens as performed by others. A study by Gilbert and Guo (2005) accurately recorded the flexural behaviour of flat slab specimens under uniformly distributed loads for test periods up to 750 days. The methods to evaluate the serviceability of a slender member were also applied to slab examples designed using South African standards. The study concludes by suggesting a suitable deflection prediction method for different parameter (limitation) categories with which a slender member can comply to. The typical span/effective depth ratio trend is also presented as the percentage tension reinforcement for a slender member changes. It is observed that the empirical hand-calculation methods present more reliable results than those of the finite element models. The empirical hand-calculation methods are accurate depending on the precision to which the slab was constructed relative to the actual slab design. The comparison of the deflection methods with South African case studies identified the role played by construction procedures, material parameters and loading history on slab behaviour. / AFRIKAANSE OPSOMMING: Die diensbaarheidstoestand is in baie gevalle die bepalende faktor vir die ontwerp van slank gewapende beton elemente bepaal. Slank elemente, soos lig bewapende buigbare beton elemente, het gewoonlik ‘n persentasie trekbewapening van minder as 1.0% en ‘n aangewende buigmoment net wat net groter is as die punt waar kraking voorkom. Die metodes beskikbaar om die diensbaarheid van sulke elemente te evalueer gee onvoldoende en onrealistiese resultate. Die evaluering van die elemente in die diensbaarheidstoestand sluit in die bepaling van defleksies deur berekening of die analise van ‘n eindige element model, en die gebruik van die span/effektiewe diepte metode. Die fokus van die studie is platbladstrukture. Die doel van die studie is om die verskillende metodes vir die bereking van defleksie asook die verifikasie volgens span/effektiewe diepte metodes van die verskillende ontwerp standaarde te ondersoek. Die ontwerp standaarde sluit die ACI 318 (2002), SABS 0100-1 (2000), EC2 (2004) en die BS 8110 (1997) in. Die agtergrond van hierdie metodes is ondersoek asook die parameters wat ‘n rol speel, sodat die beperkings van die metodes geidentifiseer kan word. As ‘n gevolg van die ondersoek na die beperkings van die metodes, is ‘n Alternatiewe Benadering voorgestel. Die Alternatiewe Benadering is saam met die metodes van die ontwerpstandaarde gebruik om die verskille tussen die metodes te evalueer. Die defleksievoorspelling en die span/effektiewe diepte verifikasie metodes is korrek geformuleer om die diensbaarheid van balke te evalueer. Ander benaderings was nodig om die diensbaarheid van blad blaaie te toets. Die onderskeie defleksievoorspelling en span/effektiewe diepte metodes is bereken vir sewe eksperimentele plat blaaie soos uitgevoer deur ander navorsers. Gilbert and Guo (2005) het ‘n studie uitgevoer waar die buigingsgedrag van die sewe plat blaaie, met ‘n uniforme verspreide las vir ‘n toetsperiode van tot 750 dae, akkuraat genoteer is. Die metodes om die diensbaarheid van ‘n slank element te toets, was ook op Suid-Afrikaanse blad voorbeelde getoets. Dit was gedoen om die Suid- Afrikaanse ontwerp van ligte bewapende beton elemente te evalueer. Die gevolgetrekkings stel ‘n gepaste defleksie metode vir ‘n slank element vir verskillende beperking kategorië voor. Dit is ook verduidelik hoe die tipiese span/effektiewe diepte verhouding met die persentasie trek bewapening vir ‘n slank element verander. Dit is bevind dat die imperiese handmetodes om defleksies te bereken, meer betroubaar as die eindige element modelle se resultate is. Die imperiese handberekening metodes is akkuraat relatief tot hoe akkuraat die blad konstruksie tot die blad ontwerp voltooi is. ‘n Vergelyking van defleksieberekening met Suid-Afrikaanse gevallestudies het die belangrikheid van konstruksieprosedures, materiallparamteres and belastingsgeskiedenis geïdentifiseer.
96

Behaviour of continuous concrete slabs reinforced with FRP bars : experimental and computational investigations on the use of basalt and carbon fibre reinforced polymer bars in continuous concrete slabs

Mahroug, Mohamed Elarbi Moh January 2013 (has links)
An investigation on the application of basalt fibre reinforced polymer (BFRP) and carbon fibre reinforced polymer (CFRP) bars as longitudinal reinforcement for simple and continuous concrete slabs is presented. Eight continuously and four simply concrete slabs were constructed and tested to failure. Two continuously supported steel reinforced concrete slabs were also tested for comparison purposes. The slabs were classified into two groups according to the type of FRP bars. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over FRP (BFRP/CFRP) reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP and CFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. The experimental results showed that increasing the bottom mid-span FRP reinforcement of continuous slabs is more effective than the top over middle support FRP reinforcement in improving the load capacity and reducing mid-span deflections. Design guidelines have been validated against experimental results of FRP reinforced concrete slabs tested. ISIS-M03-07 and CSA S806-06 equations reasonably predicted the deflections of the slabs tested. However, ACI 440-1R-06 underestimated the deflections, overestimated the moment capacities at mid-span and over support sections, and reasonably predicted the load capacity of the continuous slabs tested. On the analytical side, a numerical technique consisting of sectional and longitudinal analyses has been developed to predict the moment-curvature relationship, moment capacity and load-deflection of FRP reinforced concrete members. The numerical technique has been validated against the experimental test results obtained from the current research and those reported in the literature. A parametric study using the numerical technique developed has also been conducted to examine the influence of FRP reinforcement ratio, concrete compressive strength and type of reinforcement on the performance of continuous FRP reinforced concrete slabs. Increasing the concrete compressive strength decreased the curvature of the reinforced section with FRP bars. Moreover, in the simple and continuous FRP reinforced concrete slabs, increasing the FRP reinforcement at the bottom layer fairly reduced and controlled deflections.
97

Behaviour of continuous concrete slabs reinforced with FRP bars. Experimental and computational investigations on the use of basalt and carbon fibre reinforced polymer bars in continuous concrete slabs.

Mahroug, Mohamed E.M. January 2013 (has links)
An investigation on the application of basalt fibre reinforced polymer (BFRP) and carbon fibre reinforced polymer (CFRP) bars as longitudinal reinforcement for simple and continuous concrete slabs is presented. Eight continuously and four simply concrete slabs were constructed and tested to failure. Two continuously supported steel reinforced concrete slabs were also tested for comparison purposes. The slabs were classified into two groups according to the type of FRP bars. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over FRP (BFRP/CFRP) reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP and CFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. The experimental results showed that increasing the bottom mid-span FRP reinforcement of continuous slabs is more effective than the top over middle support FRP reinforcement in improving the load capacity and reducing mid-span deflections. Design guidelines have been validated against experimental results of FRP reinforced concrete slabs tested. ISIS¿M03¿07 and CSA S806-06 equations reasonably predicted the deflections of the slabs tested. However, ACI 440¿1R-06 underestimated the deflections, overestimated the moment capacities at mid-span and over support sections, and reasonably predicted the load capacity of the continuous slabs tested. On the analytical side, a numerical technique consisting of sectional and longitudinal analyses has been developed to predict the moment¿curvature relationship, moment capacity and load-deflection of FRP reinforced concrete members. The numerical technique has been validated against the experimental test results obtained from the current research and those reported in the literature. A parametric study using the numerical technique developed has also been conducted to examine the influence of FRP reinforcement ratio, concrete compressive strength and type of reinforcement on the performance of continuous FRP reinforced concrete slabs. Increasing the concrete compressive strength decreased the curvature of the reinforced section with FRP bars. Moreover, in the simple and continuous FRP reinforced concrete slabs, increasing the FRP reinforcement at the bottom layer fairly reduced and controlled deflections.
98

The structural use of synthetic fibres : thickness design of concrete slabs on grade

Bothma, Jacques 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: Concrete is used in most of the modern day infrastructure. It is a building material for which there exist various design codes and guidelines for its use and construction. It is strong in compression, but lacks tensile strength in its fresh and hardened states and, when unreinforced, fails in a brittle manner. The structural use of synthetic fibres in concrete is investigated in this study to determine its effect on enhancing the mechanical properties of concrete. Slabs on grade are used as the application for which the concrete is tested. The material behaviour is investigated in parallel with two floor design theories. These are the Westegaard theory and the Yield-Line theory. The Westegaard theory uses elastic theory to calculate floor thicknesses while the Yield-Line theory includes plastic behaviour. Conceptual designs are performed with the two theories and material parameters are determined from flexural tests conducted on synthetic fibre reinforced concrete (SynFRC) specimens. Large scale slab tests are performed to verify design values from the two theories. Higher loads till first-crack were measured during tests with concrete slabs reinforced with polypropylene fibres than for unreinforced concrete. It is found that the use of synthetic fibres in concrete increases the post-crack ductility of the material. The Westegaard theory is conservative in its design approach by over-estimating design thicknesses. This was concluded as unreinforced slabs reached higher failure loads than predicted by this theory. The Yield-Line theory predicts design thicknesses more accurately while still accounting for the requirements set by the ultimate- and serviceability limit states. By using SynFRC in combination with the Yield-Line theory as design method, thinner floor slabs can be obtained than with the Westegaard theory. / AFRIKAANSE OPSOMMING: Beton word gebruik as boumateriaal in meeste hedendaagse infrastruktuur. Daar bestaan verskeie ontwerp kodes en riglyne vir die gebruik en oprig van beton strukture. Alhoewel beton sterk in kompressie is, het beton ‘n swak treksterkte in beide die vars- en harde fases en faal dit in ‘n bros manier indien onbewapen. Die gebruik van sintetiese vesels in beton word in hierdie projek ondersoek om die invloed daarvan op die eienskappe van die meganiesegedrag van beton te bepaal. Grond geondersteunde vloere word as toepassing gebruik. Parallel met die materiaalgedrag wat ondersoek word, word twee ontwerpsteorieë ook ondersoek. Dit is die teorie van Westegaard en die Swig-Lyn teorie. Die teorie van Westegaard gebruik elastiese teorie in ontwerpsberekeninge terwyl die Swig-Lyn teorie ‘n plastiese analise gebruik. ‘n Konseptuele vloerontwerp is gedoen deur beide die ontwerpsmetodes te gebruik. Materiaalparameters is bepaal deur buig-toetse uit te voer op sintetiesevesel-bewapende beton. Grootskaalse betonblaaie is gegiet en getoets om die akkuraatheid van die twee metodes te verifieer. Die betonblaaie wat bewapen was met polipropileen vesels het groter laste gedra tot by faling as die blaaie wat nie bewapen was nie. Die vesels verbeter die gedrag van beton in die plastiese gebied van materiaalgedrag deurdat laste ondersteun word nadat die beton alreeds gekraak het. Die Westegaard teorie kan as konserwatief beskou word deurdat dit vloerdiktes oorskat. Hierdie stelling is gegrond op eksperimentele data wat bewys dat onbewapende betonblaaie groter laste kan dra as wat voorspel word deur die Westegaard teorie. Die Swig-Lyn teorie voorspel ontwerpsdiktes meer akkuraat terwyl daar steeds aan die vereistes van swigting en diensbaarheid voldoen word. Deur gebruik te maak van sintetiese vesels en die Swig-Lyn teorie kan dunner betonblaaie ontwerp word as met die Westegaard teorie.
99

Análise estrutural de lajes formadas por elementos pré-moldados tipo vigota com armação treliçada / Structural analysis of slabs made by precast elements type lattice joist

Droppa Júnior, Alonso 26 March 1999 (has links)
Neste trabalho é enfocada a análise estrutural de lajes pré-moldadas formadas por vigotas treliçadas. Esta análise foi realizada mediante o modelo de grelha, considerando a não-linearidade do concreto armado utilizando-se a relação momento x curvatura e carregamento incremental. O modelo da não-linearidade do concreto armado foi avaliado com resultados experimentais de vigas bi-apoiadas e painéis de laje contínua. O trabalho inclui uma análise teórico-experimental de uma laje pré-moldada bidirecional isolada e simulações numéricas de casos representativos de arranjos estruturais das lajes treliçadas. As principais conclusões do trabalho foram: a) o modelo de grelha é bastante adequado para a análise de lajes nervuradas pré-moldadas; b) os resultados da análise teórico-experimental da laje pré-moldada indicam que os deslocamentos foram fortemente influenciados pela rigidez à torção e c) a redistribuição de momentos fletores nas lajes contínuas é relativamente pequena. / This work aims the structural analysis in precast slabs made by lattice joist. The scheme was carried out by using the grillage model considering the non-linear of the reinforced concrete through the relationship moment x curvature and incremental loads. The non-linear model of the reinforced concrete was appraised with experimental of simply supported beams and panels of continuos slabs. The work includes a theoretical-experimental analysis of a isolated bidirectional precast slabs and numeric simulations of representative cases of structural arrangements of the slabs witch lattice joist. The main conclusions of the work were: a) the grillage model is quite appropriate for precast ribbed slabs; b) the results of theoretical-experimental analysis of the precast slabs point out the relevance the torsional in the deflections and c) the bending moments redistribution in the continuous slabs are quite small.
100

Comportamento Estrutural de Lajes Nervuradas de Concreto Armado com Base no Emprego do Programa ANSYS / Structural Behavior of Reinforced Concrete Ribbed Slabs Using Ansys Program

Wisner Coimbra de Paula 12 March 2007 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / A utilização de lajes nervuradas nas edificações em geral vem crescendo no Brasil, pois,com o desenvolvimento da computação, a modelagem destas estruturas tornou-se mais acessível aos projetistas e as vantagens inerentes ao sistema tornaram-se visíveis. Por esta razão, vários trabalhos foram publicados nos últimos anos tendo como finalidade a análise deste tipo de laje, sempre utilizando e comparando diferentes métodos de análise, dentre os quais pode-se destacar: analogia de grelha e método dos elementos finitos. Uma das razões para isto é a utilização da analogia de grelha pelos principais programas comerciais de cálculo de concreto armado. Este trabalho faz uma análise paramétrica de um modelo de laje nervurada de concreto armado denominada REDUZCON e determina a influência de diversos parâmetros relevantes na análise elástico-linear destas lajes. O sistema de laje REDUZCON é um sistema de laje nervurada que utiliza cubas cilíndricas invertidas metálicas denominadas BRC (barrote redutor de concreto). Por meio do estudo paramétrico das lajes nervuradas de concreto armado do tipo REDUZCON são abordados fatores importantes para o modelo de analogia de grelha, como a condição do apoio (deslocável ou indeslocável) e o momento de inércia à torção. Também é estudada a influência da relação entre os vãos e do número de nervuras para uma laje cuja quantidade de nervuras é diferente nos dois sentidos. Investiga-se, ainda, a freqüência fundamental de algumas destas lajes, para comparação com os valores recomendados pela NBR-6118 (2003). Os resultados obtidos ao longo do estudo indicam claramente, que os parâmetros mais relevantes na analogia de grelha, tais como momento de inércia à torção e condição de apoio das lajes, modificam substancialmente os resultados de deslocamento e esforços do sistema estrutural. / The use of ribbed slabs in the constructions in general is growing in Brazil, because, with the development of the computation, the modelling of these structures became more accessible to the designers and the inherent advantages to the system became visible. For this reason, several works were published in the last years having as purpose the analysis of this slabs type, always using and comparing different methods, among them, grillage analogy are the most used, since it is also used in the main commercial programs of reinforced concrete. In this work a parametric analyzes of a model of ribbed slabs of reinforced concrete called REDUZCON is made and it determines the influence of several relevant parameters in the elastic-lineal analysis of these slabs. This system makes use of inverse cylinder metallic cap named BRC (reduced concrete cap). Through the parametric analysis of the ribbed slabs REDUZCON, important factors are approached for the model of grillage analogy, as the boundary conditions, torsional inertia of the system (ribs and board beams), geometry of the edge beams, and the number of transversal ribbings. It is also studied the influence of the sides ratio. Finally is also investigated the natural frequency of some of these slabs and compared with the values recommended in the design codes. The results obtained along the study indicate clearly, that the most relevant parameters in the grillage analogy, such as torsional inertia and condition of support of the slabs, they modify the displacement results and efforts of the structural system substantially.

Page generated in 0.0352 seconds