• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A center for sleep research at Emory University Hospital

Tanner, Brian Charles 08 1900 (has links)
No description available.
2

Effects of a chinese herbal medicine formula (SD) on a Drosophila sleep model.

January 2008 (has links)
Yu, Siu Lung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 117-124). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Chinese Abstract --- p.iv / Table of Contents --- p.v / List of Figures --- p.viii / List of Tables --- p.x / List of Abbreviations --- p.xi / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- General introduction of sleep --- p.1 / Chapter 1.1.1 --- Sleep disorders --- p.1 / Chapter 1.1.2 --- Classification systems for sleep disorders --- p.2 / Chapter 1.2 --- Insomnia --- p.4 / Chapter 1.2.1 --- Definition --- p.4 / Chapter 1.2.2 --- Consequences of insomnia --- p.6 / Chapter 1.2.3 --- Prevalence --- p.8 / Chapter 1.2.4 --- Subtypes of insomnia --- p.9 / Chapter 1.2.5 --- Causes --- p.12 / Chapter 1.2.6 --- Treatment of insomnia --- p.13 / Chapter 1.2.6.1 --- Cognitive-behavioral therapy for insomnia --- p.14 / Chapter 1.2.6.2 --- Pharmacological treatment for insomnia --- p.17 / Chapter 1.3 --- Traditional Chinese medicine and herbs in SD formula --- p.22 / Chapter 1.4 --- Drosophila model for studying sleep --- p.25 / Chapter 1.4.1 --- Drosophila as a disease model --- p.25 / Chapter 1.4.2 --- Drosophila Sleep --- p.26 / Chapter 1.4.3 --- Similarity of Drosophila and mammalian sleep --- p.26 / Chapter 1.4.4 --- Methods for measuring Drosophila sleep --- p.29 / Chapter 1.4.4.1 --- Surrogate measurement of sleep in Drosophila --- p.31 / Chapter 1.5 --- Objectives of study --- p.33 / Chapter 2 --- Materials and Methods --- p.35 / Chapter 2.1 --- Preparation of the Sleep Disorder (SD) extract --- p.35 / Chapter 2.2 --- Establishment of the Drosophila sleep model --- p.38 / Chapter 2.2.1 --- Drosophila culture --- p.38 / Chapter 2.2.1.1 --- Fly stock --- p.38 / Chapter 2.2.1.2 --- Fly food --- p.38 / Chapter 2.2.1.3 --- Culture environment --- p.38 / Chapter 2.2.2 --- Preparation of flies for experiments --- p.39 / Chapter 2.2.3 --- Agar food and drug preparation --- p.39 / Chapter 2.2.4 --- Measurement of activity and sleep in fly --- p.40 / Chapter 2.2.5 --- Determining the effects of SD extract on Drosophila sleep --- p.40 / Chapter 2.2.5.1 --- Data analysis --- p.41 / Chapter 2.2.6 --- Test of amount of food intake for different dosages of SD using food dye --- p.41 / Chapter 2.2.7 --- Survival test --- p.42 / Chapter 2.3 --- Establishment of the Drosophila caffeine-induced insomnia model --- p.43 / Chapter 2.3.1 --- Determining the effects of caffeine on the Drosophila sleep --- p.43 / Chapter 2.3.2 --- Determining the effects of SD extract on the Drosophila caffeine-induced insomnia model --- p.43 / Chapter 2.3.2.1 --- HPLC determination of caffeine intake in Drosophila --- p.44 / Chapter 2.3.2.2 --- "Spectrophotometric measurement of caffeine, SD and caffeine-SD solutions" --- p.45 / Chapter 2.4 --- "Expression of Cyp6a8, Djun and Dfos in drug-treated Drosophila heads" --- p.46 / Chapter 2.4.1 --- Drug treatment and collection of fly head samples --- p.46 / Chapter 2.4.2 --- Total RNA extraction from fly heads --- p.46 / Chapter 2.4.3 --- Real-time polymerase chain reaction analysis --- p.48 / Chapter 2.5 --- Determining the effects of SD formula on short-sleep mutants --- p.51 / Chapter 2.5.1 --- Fly stocks --- p.51 / Chapter 2.5.2 --- Experimental design --- p.51 / Chapter 3. --- Results --- p.53 / Chapter 3.1 --- Establishment of the Drosophila sleep model --- p.53 / Chapter 3.1.1 --- Baseline activity and sleep --- p.53 / Chapter 3.1.2 --- Effect of SD on Drosophila sleep --- p.55 / Chapter 3.1.3 --- Amount of food intake for different dosages of SD --- p.57 / Chapter 3.1.4 --- Effect of SD on the survival of wide-type (CSI) flies --- p.59 / Chapter 3.2 --- Establishment of the caffeine-induced insomnia model in Drosophila --- p.61 / Chapter 3.2.1 --- Effect of Caffeine on Drosophila sleep --- p.61 / Chapter 3.2.2 --- Effect of the SD on the caffeine-induced wakefulness --- p.64 / Chapter 3.2.3 --- Validation of caffeine intake by HPLC --- p.68 / Chapter 3.2.4 --- "Spectra of caffeine, SD and caffeine-SD solutions" --- p.72 / Chapter 3.3 --- Effect of SD on the sleep of short-sleep mutants --- p.74 / Chapter 3.3.1 --- fumin mutant --- p.74 / Chapter 3.3.2 --- minisleep mutant --- p.78 / Chapter 3.3.3 --- HkY fly --- p.82 / Chapter 3.4 --- Effect of the SD and caffeine on gene expression --- p.86 / Chapter 3.4.1 --- Effect of the SD and caffeine on Cyp6a8 mRNA expression --- p.86 / Chapter 3.4.2 --- Effect of the SD and caffeine on Djun mRNA expression --- p.89 / Chapter 3.4.3 --- Effect of the SD and caffeine on Dfos mRNA expression --- p.91 / Chapter 4. --- Discussion --- p.93 / Chapter 4.1 --- Rationales for evaluating the effect of SD formula in Drosophila model --- p.94 / Chapter 4.2 --- Establishment of the Drosophila Sleep model --- p.96 / Chapter 4.2.1 --- Hypnotic effect of SD in Drosophila --- p.97 / Chapter 4.2.2 --- Toxicity of SD extract in fly --- p.98 / Chapter 4.3 --- Effect of SD on Drosophila caffeine-induced insomnia model --- p.100 / Chapter 4.3.1 --- Drug administration in Drosophila --- p.102 / Chapter 4.4 --- Effect of SD on Short-sleep mutant --- p.105 / Chapter 4.5 --- Study of gene expression by SD --- p.108 / Chapter 4.6 --- Limitations of the model --- p.112 / Chapter 5. --- Conclusion and Future Prospects --- p.115 / Chapter 5.1 --- Conclusion --- p.115 / Chapter 5.2 --- Future prospects --- p.115 / References --- p.117
3

Anxiety, Depression, and Sleep Disorders: Their Relationship and Reduction with Neurotherapy

Fisher, Christopher, Alan 08 1900 (has links)
This study investigated the relationship among anxiety, depression, and sleep disturbances and the treatment of these three disorders through neurotherapy. Research suggests that these conditions commonly co-occur in the general population and that central nervous system (CNS) arousal may play a primary role in the development and maintenance of these disorders. Several recent studies suggested that neurotherapy, a biofeedback-based treatment for CNS dysregulation, might be an effective treatment for comorbid conditions, particularly the ones of interest here, depression, anxiety, and sleep disturbances. This investigation used a clinical case-series design to assess pre/post neurotherapy changes on objective measures of anxiety, depression, and sleep and to determine whether changes in anxiety and depression then predict improvements in sleep quality. Data for 23 participants (10 males) were obtained from files of adults (Mage = 40.22 years, SD = 16.20) who received at least 15 neurotherapy sessions (M = 47.83 sessions, SD = 22.23) the University of North Texas Neurotherapy Lab. Matched pair t-tests revealed that symptoms of sleep disturbance, depression, and anxiety showed significant improvements following neurotherapy. Neurotherapy treatment effect sizes generally ranged from moderate to large (d = .414 - .849). Multiple regression analysis found that changes in self-reported anxiety symptoms, but not depressive symptoms, predicted observed improvements in sleep quality (adjusted R2 = .26). Last, the implications and limitations were discussed in relation to neurotherapy practice and the associated research.

Page generated in 0.083 seconds