• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 16
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 22
  • 18
  • 17
  • 13
  • 11
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Influência da nitretação a plasma e carbonetação a laser nas propriedades tribológicas do par aço AISI/SAE 4340 e liga bronze-alumínio 630 / Influence of plasma nitriding and laser carburizing on tribological properties of AISI/SAE 4340 steel and 630 aluminum-bronze alloy

Barros, Renato Araujo [UNESP] 23 February 2017 (has links)
Submitted by RENATO ARAUJO BARROS null (greensleeves@uol.com.br) on 2017-03-08T17:38:24Z No. of bitstreams: 1 Tese Renato Barros - Versão Final.pdf: 24319782 bytes, checksum: f4d58ce4ebe77961a2e94b04cf3515cc (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-13T17:07:44Z (GMT) No. of bitstreams: 1 barros_ra_dr_guara.pdf: 24319782 bytes, checksum: f4d58ce4ebe77961a2e94b04cf3515cc (MD5) / Made available in DSpace on 2017-03-13T17:07:44Z (GMT). No. of bitstreams: 1 barros_ra_dr_guara.pdf: 24319782 bytes, checksum: f4d58ce4ebe77961a2e94b04cf3515cc (MD5) Previous issue date: 2017-02-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os aços de ultra alta resistência como o aço 4340 tem sido amplamente utilizados pela indústria aeronáutica e aeroespacial em aplicações como trens de pouso de aeronaves e o veículo lançador de satélite brasileiro (VLS), além de um uso extensivo para diversos setores da indústria em geral. Isso se deve, em grande medida, às suas propriedades mecânicas. Este trabalho se propõe a avaliar as propriedades tribológicas do par aço 4340, inicialmente submetido ao tratamento térmico de têmpera e revenimento, e a liga bronze alumínio 630, utilizados em trens de pouso. Será estudado o comportamento destas estruturas após o aço ser submetido a tratamentos de superfície por nitretação a plasma e carbonetação a laser, como forma de melhorar seu desempenho com relação ao atrito e ao desgaste. Neste estudo foi escolhido o ensaio tipo pino-disco para simular a situação real de desgaste. Os discos foram confeccionados a partir do aço AISI/SAE 4340 e os pinos foram feitos da liga bronze-alumínio 630. Foram realizadas análises microestruturais das estruturas e das camadas de compostos formadas devido ao tratamento de superfície, Após os ensaios de desgaste foram feitas observações das superfícies através de microscopia e perfilometria óptica, microscopia eletrônica de varredura, difratometria de raios-X, testes de riscamento (scratching tests), dureza, observação de rugosidade e pesagem dos corpos de prova. Foram levantados os parâmetros do desgaste e alterações microestuturais devido à interação entre as superfícies de contato durante os ensaios de deslizamento. Foi analisada a perda de massa e levantadas as curvas de desgaste e dos parâmetros relacionados ao atrito em função da distância percorrida e/ou do tempo de ensaio. Nos ensaios foram utilizadas três velocidades de ensaio: 0,5; 1,0 e 1,5 m/s. Foi possível o cálculo da taxa de desgaste para cada par e velocidades estudadas. De uma maneira geral constatou-se que os mecanismos de desgaste detectados são semelhantes para todas as condições de superfície dos discos. As imagens mostram que partículas do pino são deformadas sobre o disco, em forma de camadas, evidenciando o mecanismo de adesão. A carbonetação a laser criou uma camada rica em carbono com a presença de grafite que contribuiu para reduzir o coeficiente de atrito e o desgaste do pino, principalmente, para as velocidades de 0,5 e 1,0 m/s. A nitretação a plasma reduziu a perda de massa do disco e do pino, com indicativos de pequena perda de massa para todas as velocidades estudadas; a rugosidade e o aumento do coeficiente de atrito no par pino-disco para as velocidades de 1,0 e 1,5 m/s podem ter sido induzidas por alteração no tipo de desgaste, de adesivo para uma abrasão a três corpos. / Ultra high strength steels as 4340 steel has been widely used by the aerospace industry in applications such as aircraft landing gears and the Brazilian satellite launch vehicle (VLS), plus an extensive use for various sectors of the industry in general. This is due largely to their mechanical properties. This work aims to evaluate the tribological properties of 4340 steel pair, initially submitted to heat treatment of quenching and tempering, and aluminum bronze 630 alloy, used in landing gear. The behavior of these structures after the steel be subjected to surface treatment by plasma nitriding and laser carbonetation will be studied, as a way to improve its performance with respect to friction and wear. For this study, pin-on-disc test was chosen in order to simulate the real situation of wear. The discs were made from 4340 steel and pins were made of aluminium bronze 630 alloy. Micro-structural analyses were undertaken of the structures and compound layers formed due to surface treatment. After the wear tests surface observations were made through microscopy and perfilometry optical, scanning electron microscopy, x-ray diffractometry, x-ray tests, scratching tests, hardness, roughness and weighing of the specimens. Parameters of wear and microestuturals changes were raised due to interaction between the contact surfaces during rehearsals. Loss of mass was analyzed and curves of wear and friction related parameters were plotted in function of the slided distance and/or time of test. In the tests three test velocities were used: 0.5; 1.0 and 1.5 m/s. It was possible to calculate the wear rate for each pair and studied velocities. In general it was noted that the mechanisms of wear detected are similar for all conditions of the surface of the discs. The images show that the particles are bent on the disc, in the form of layers, showing the mechanism of adhesion. The laser carbonetation created a carbon-rich layer with the presence of graphite, which contributed to reduce the friction coefficient and pin wear, mainly for the 0.5 and 1.0 m/s velocities. The plasma nitriding reduced the loss in mass of the disk and pin, with indicative of small mass loss for all velocities studied; the roughness and the increase of the coefficient of friction in the couple pin-disc for the velocities of 1.0 and 1.5 m/s may have been induced by changes in the type of wear, from adhesive wear to a three-body abrasion. / CAPES: 99999.002441/2014-04
42

Dry Sliding Wear of Saffil Short Fibre Reinforced AZ91D Mg Alloy Composite

Hegde, Adarsh K January 2016 (has links) (PDF)
Magnesium alloys have emerged as a promising material for light-weighting due to their potential for higher weight saving compared with advanced high-strength steel, aluminium alloys and glass fibre reinforced polymer composites based on equal stiffness or strength. Even though magnesium alloys offer low density, high strength to weight ratio and excellent machinability their poor creep resistance and low yield strength at elevated temperatures (~150oC) restricts their use in automotive powertrain applications. Possible ways of improving the creep resistance include development of creep resistant alloys and/or reinforcing the alloy with ceramic particulates, fibres/whiskers. Several magnesium alloys such as – Mg-Zr based alloys, Mg-Al-RE alloys (RE: rare earth), Mg-Al-Ca alloys, Mg-Al-Sr alloys, Mg-Al-Sr-Ca alloys, Mg-Al-Si alloys offer improvement in creep resistance to different extent. However, these alloys are relatively expensive than the widely used Mg-Al-Zn alloys. Some of these alloys are unsuitable for die casting application due to cracking or die filling problems for example, in Ca and Sr containing alloys their content must be controlled to avoid castability problems. Discontinuous reinforcement of magnesium alloys opens up wide variety of casting techniques for production. Most of the components do not require high performance capability all throughout the component. Squeeze casting technique can be used to economically produce selectively reinforced composites having complex near-net-shape components. By selectively reinforcing only the regions of stress concentration, material property can be optimised at the same time lowering both the cost of manufacturing and machining. In the present study, wear behaviour of Saffil short fibre reinforced AZ91D Mg alloy composite prepared by squeeze casting is explored. The Mg-Saffil composite had a two dimensional planar random fibre orientation which was inherent to the fabrication process of porous fibre preform. In the as-polished specimen fibres protrude out of the Mg matrix due to differential polishing. The Mg-Saffil composites were subject to unidirectional sliding wear against steel counterface under nominally dry condition in ambient atmosphere at low velocities, to simulate the piston reversal at the top dead centre of an engine wherein lubrication starvation results in wear of engine cylinder. The fibres protruding out of the magnesium matrix prevent the softer Mg matrix coming in contact with the counterface material. The worn surface was examined by means of scanning electron microscopy and the physical and chemical changes caused by the wear processes were characterised using different spectroscopic techniques. The effect of fibre distribution and fibre orientation on wear of the composite was studied. Depending on the radius of curvature of the counterface, inhomogeneities in the fibre distribution up to a certain length scale were permissible without deteriorating the wear resistance of the composite. The normal fibre orientation proved deleterious to the wear of the counterface. But wear of the composite was independent of the fibre orientation of the wear surface. In contrast to unreinforced AZ91 Mg alloy which undergoes extensive wear, the steel counterface was machined by the hard alumina fibres protruding out of the matrix. With progressive sliding a discontinuous patch of transferred material formed on the worn surface. Eventually, an oxidised iron-rich transfer layer formed on the worn surface due to compaction of the transferred material and wear debris under the combined action of applied normal load and frictional force. The coefficient of friction plateaus following an initial rapid increase with the increase in the areal coverage of the transfer layer. The abrupt increase in friction coincides with the change in contact at the sliding interface from protruding alumina fibres/steel counterface to mostly between the transferred layer and steel counterface. The increase in friction due to the iron-rich transfer layer formed on the worn surface induced bending stresses in the fibre. A correlation between the incipient fibre fracture and build-up of the transfer layer was observed. Wear of the composite was governed by the dawn of the fibre fracture event, which in turn leads to three-body wear. Diamond-like carbon coatings are well-known for their low friction, high hardness and elastic modulus, chemical inertness and optical transparency. They have found widespread use due to their superior tribological characteristics as protective coatings for magnetic storage media (hard-disk drives), in micro-electromechanical devices (MEMS), biomedical applications (joint implants, artificial heart valves), optical windows (anti-reflection coating) and razor blades. The physical and mechanical properties of these coatings can be tailored by controlling the sp3 /sp2 ratio and modification via alloying with metals such as W, Ti, Cr, Al; or non-metallic elements such as B, N, F, Si. A tungsten doped hydrogenated diamond-like carbon coated steel counterface was used to rule out or minimise any chemical and physical interaction between the composite and the counterface. The composite exhibited a higher wear resistance when slid against a DLC coated steel counterface due to ease of interfacial sliding between the carbon-rich transfer layer and the DLC coated counterface. The transition from ultra-mild to mild wear was not altogether suppressed but delayed to higher loads, prolonging the ultra-mild wear regime. As a result of reduced friction the point of maximum shear stress recedes from the surface, which manifests as subsurface cracks. The dominant wear mechanism of Mg-Saffil composite sliding against the DLC coated counterface was delamination wear.
43

Tribological and Mechanical Behaviour of Lamellar and Compacted Graphite Irons in Engine Applications

Ghasemi, Rohollah January 2015 (has links)
There has been much discussion about the beneficial uses of lamellar graphite iron in piston rings–cylinder liner systems, where a good combinations of both thermal and tribological properties are essential. The excellent tribological performance of lamellar iron under such sliding conditions is principally associated with lubrication behaviour of the graphite particles which are distributed as lamellas throughout the matrix. During sliding, graphite particles are extruded and smeared onto the counterfaces, act as solid lubricating agents and form a thin graphite film between the sliding surfaces. Although this process especially, during the running-in period significantly changes the sliding wear response of the components, the exact mechanism behind of this phenomenon has rarely been discussed in previous studies. It is tribologically beneficial to keep the graphite open, particularly in applications where the scuffing issues do matter. In this thesis, the main causes involved in closing the graphite lamellas are discussed, with a focus on matrix plastic deformation that occurs during sliding. In first step, the relationship between graphite lamellae orientation and plastic deformation was investigated. To do so, two piston rings, belonging to the same two-stroke marine engine operated for different periods of time, were selected and compared to the unworn sample. The worn piston rings displayed a substantial decrease in both frequency and area fraction of the graphite lamellas. Most of the lamellas were closed as a result of plastic deformation of matrix. This happening was caused mainly by the interaction between abrasive particles and metallic matrix. Additionally, it was found that graphite lamellas parallel or near-parallel to the sliding direction exhibited maximum closing tendency under sliding condition. In next step, to have a better understanding of the graphite film formation mechanism and matrix deformation role in closing the graphite lamellas, microindentation and microscratch testing were performed on typical lamellar iron. The qualitative results showed a similar mechanism involving in graphite contribution to lubricate the sliding surfaces. Moreover, microindentations made nearby the graphite lamellas demonstrated that the deformation of the matrix causes the formation of cracks in the centre of the graphite lamellas, compressing and then extruding the graphite from its natural position, irrespective of the lamellas′ size. Furthermore, it was found that subsurface graphite orientation had a large influence on the extrusion behaviour, in that, for graphite lamellas oriented towards the indenter, the effect was observed more pronounced. Furthermore, an improved fully ferritic solution strengthened compacted graphite iron was produced for future wear studies. The effects of different Si levels and section thicknesses on tensile properties and hardness were investigated as well. The influence of Si content and section thickness on mechanical properties was revealed by improving the materials strength and slightly enhancing the hardness through increasing Si content. Besides, Si addition up to 4.5 wt% significantly affected the strength and elongation to failure of cast samples. / Helios / FFI
44

Tribological and Mechanical Behaviour of Lamellar and Compacted Graphite Irons in Engine Applications

Ghasemi, Rohollah January 2015 (has links)
There has been much discussion about the beneficial uses of lamellar graphite iron in piston rings–cylinder liner systems, where a good combinations of both thermal and tribological properties are essential. The excellent tribological performance of lamellar iron under such sliding conditions is principally associated with lubrication behaviour of the graphite particles which are distributed as lamellas throughout the matrix. During sliding, graphite particles are extruded and smeared onto the counterfaces, act as solid lubricating agents and form a thin graphite film between the sliding surfaces. Although this process especially, during the running-in period significantly changes the sliding wear response of the components, the exact mechanism behind of this phenomenon has rarely been discussed in previous studies. It is tribologically beneficial to keep the graphite open, particularly in applications where the scuffing issues do matter. In this thesis, the main causes involved in closing the graphite lamellas are discussed, with a focus on matrix plastic deformation that occurs during sliding. In first step, the relationship between graphite lamellae orientation and plastic deformation was investigated. To do so, two piston rings, belonging to the same two-stroke marine engine operated for different periods of time, were selected and compared to the unworn sample. The worn piston rings displayed a substantial decrease in both frequency and area fraction of the graphite lamellas. Most of the lamellas were closed as a result of plastic deformation of matrix. This happening was caused mainly by the interaction between abrasive particles and metallic matrix. Additionally, it was found that graphite lamellas parallel or near-parallel to the sliding direction exhibited maximum closing tendency under sliding condition. In next step, to have a better understanding of the graphite film formation mechanism and matrix deformation role in closing the graphite lamellas, microindentation and microscratch testing were performed on typical lamellar iron. The qualitative results showed a similar mechanism involving in graphite contribution to lubricate the sliding surfaces. Moreover, microindentations made nearby the graphite lamellas demonstrated that the deformation of the matrix causes the formation of cracks in the centre of the graphite lamellas, compressing and then extruding the graphite from its natural position, irrespective of the lamellas′ size. Furthermore, it was found that subsurface graphite orientation had a large influence on the extrusion behaviour, in that, for graphite lamellas oriented towards the indenter, the effect was observed more pronounced. Furthermore, an improved fully ferritic solution strengthened compacted graphite iron was produced for future wear studies. The effects of different Si levels and section thicknesses on tensile properties and hardness were investigated as well. The influence of Si content and section thickness on mechanical properties was revealed by improving the materials strength and slightly enhancing the hardness through increasing Si content. Besides, Si addition up to 4.5 wt% significantly affected the strength and elongation to failure of cast samples. / Helios / FFI
45

SUSTAINABLE LUBRICATION FOR FUTURE TRANSMISSIONS : Micropitting performance of Glycerol-based lubricants

Juan Guillermo, Zapata Tamayo January 2021 (has links)
Achieving sustainable lubrication by using environmentally friendly formulated lubricants has became an essential component of the transition process from fossil-powered vehicles to electrified transportation. Mixtures, or aqueous solutions of molecules such as polyhydroxy alcohols, and glycols usually known as green lubricants make it possible to achieve low friction coefficients under different lubrication conditions, which constitutes a potential alternative to improve the tribological performance of moving parts in automotive systems, at the same time that the environmental requirements are satisfied. There is a need to improve the protection against mild-wear and micropitting offered by green-lubricants before consider using them in the transmission gear box of battery electric vehicles BEVs, where their low shear-stress resistance can potentially help to improve the vehicle efficiency. Therefore, this research work aims to gain understanding of the tribological behaviour of rolling-sliding elements under glycerol-based lubrication, with focus on assessing the influence of different glycerol-based lubricant formulations on the wear modes associated to rolling contact fatigue such as micropitting, and macropitting.  Micropitting tests were carried out by using a micropitting rig, with a roller on ring planetary configuration. The evolution of microcracks, and micropitting was studied for several glycerol-based lubricants at different slide-to-roll ratios (SRRs) 5-30%, and different load contact conditions 1.5-2.5 GPa. A comparison against a fully formulated transmission oil has been performed. A relationship between the surface damage morphology and the operating conditions has been established. The lubrication regimes of DLC coated contacts and uncoated contacts in presence of glycerol-based lubricants were investigated through the construction of 3D friction maps, and Stribeck curves in a wide range of rolling speeds, and SRR testing conditions. The capability of two different DLC coating systems to prevent micropitting onset due to rolling contact fatigue in presence of glycerol-based lubricants was studied: Cr/a-WC:H/a-C:H and a-C:Cr.  Under mixed-lubrication regime it was found that a reduction up to 51% of friction can be achieved by using glycerol-based lubricants compared to a commercial transmission oil. The initial low friction coefficients at low contact cycles was attributed to the low pressure-viscosity coefficient of the glycerol-based lubricants. Friction was even further reduced with the increasing contact cycles since glycerol aqueous solutions were found to promote mild-wear, causing a smoothing of the surface asperities and therefore an enhancement of the hydrodynamic effect due a higher lambda ratio (Λ), making possible to trigger superlubricity in the contact. Surface micro-cracking was found to decrease at low SRR values under glycerol-based lubrication contrasted to the contacts lubricated with a fully formulated transmission oil. Once microcracks were nucleated, micropitting progressed faster in the contacts lubricated with glycerol-based lubricants, while micropitting was null or significantly delayed in presence of transmission oil. With the increasing SRR surface microcracks density and micropitting was found to became higher. The reduction of microcracks density with a glycerol-glycol based lubricant was attributed to the adsorption of long glycol molecules on the steel surface that avoid the direct interaction between asperities. The faster micropitting progression was attributed to the presence of dissolved water in the contact. Thin DLC a-C:Cr coatings were shown to significantly mitigate the penetration of surface initiated pits into the steel substrate, which was translated in a lower volume loss. Local micro-delamination was found to be the main reason behind coating failure in presence of glycerol-based lubricants, as a result, pitting took place on the steel exposed areas.
46

A pre-study for functional coatings evaluated on light metals to be applied on a new HPDC Mg-alloy : Investigating tribological and thermophysical properties, as-cast and coated

Albo Zieme, Louise, Bergstedt, Pontus January 2021 (has links)
Magnesium with two-thirds of the density compared to aluminium and one-quarter of steel, intrigues product developers and material scientists due to the light metal’s excellent combination of strength to weight ratio as well as their capability of being produced as a High Pressure Die Cast component compared to other ferrous or light metal alloys.   However, a magnesium alloy inherits some concerning drawbacks, limiting the exploitation in structural applications and mechanical design such as automotive, heavy machinery and aerospace components. The need for a magnesium alloy that could withstand a sufficient amount of wear, temperature and corrosive environment, leads towards the investigation and evaluation of a suitable, functional coating as a solution to exploit the evident advantages a magnesium alloy exhibits. A substantial amount of research is required in order to reduce an existing knowledge gap that is the ongoing development in the search for a sufficient functional coating and adherence capability to the highly reactive substrate that is a magnesium alloy.   This industrial master thesis is an early stage investigation to evaluate how the currently used aluminium substrate with an electrodeposited coating relate and compares to a heat-treated electroless deposited coating through tribological and thermophysical induced stresses. These properties are tested with proven industrial standard methods resulted in a comprehensive conclusion and discussion regarding the feasibility of applying the coating onto a commercial magnesium alloy closely related to the Mg-alloy developed by Husqvarna and thereby contributing to technological advances to the highly relevant topic within product development in materials engineering.

Page generated in 0.0931 seconds