• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • Tagged with
  • 19
  • 19
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Detection of Bacteriophage Infection Using Absorbance, Bioluminescence, and Fluorescence Tests

Staley, Lindsey M. 16 May 2011 (has links)
No description available.
12

Toxicity characteristic leaching procedure analysis of dye containing sludges

Nelson, John D. 06 October 2009 (has links)
The ability to leach dyestuffs contained in municipal sludge using the Toxicity Characteristic Leaching Procedure (TCLP) was investigated. In addition to the dyestuffs, metals and other organic compounds which also leached were identified. Only small amounts of color were detected in the TCLP extracts; the mean ADMI color values for undigested and aerobically digested sludges were 240 and 156 ADMI color units respectively. Concentrations of individual dyes that may have leached into the TCLP extracts were below detection limits. The reactive vinyl sulfone aniline moiety, which is released as a reduction product from the Remazol dyes used in the cellulosic textile dyeing industry, was found in the leachate from the sludge not treated by extended aerobic digestion. In the leachate from the sludge treated by extended aerobic digestion the reactive vinyl sulfone aniline reduction product was not found, suggesting that this compound was destroyed or rendered immobile by aerobic digestion. Metals leached from the sludge in trace amounts from 0.05 μg/L up to 1 mg/L. Several organic compounds detected in influent wastewater and in leachate from undigested sludge were not found in the leachate from digested sludge. / Master of Science
13

Ozone Technology for Sludge Bulking Control / Bekämpning av slamsvällning med ozonteknologi

Wijnbladh, Erik January 2007 (has links)
<p>Slamsvällning orsakar stora problem i avloppsreningsverk med biologisk rening i aktivt slamprocesser. Slamsvällning orsakas av filamentösa (trådformiga) bakterier, som inverkar negativt på slammets sedimenteringsegenskaper.</p><p>Himmerfjärdens vattenreningsverk har drabbats av detta problem som leder till ett stabilt lager av slam på ytan av sedimenteringsbassängen som inte sedimenterar.</p><p>För att lösa detta problem behandlades returslammet från sedimenteringsbassängen med ozon för att minska mängden filamentösa bakterier i returslamflödet. Ozon är en starkt oxiderande gas, som är väl användbar för icke-specifik bekämpning av slamsvällning. När ozon kommer i kontakt med den filamentösa bakteriens cellvägg penetreras det in i cellen, varvid cellen lyserar.</p><p>Ozonbehandlingen resulterade i en förminskning av antalet filamentösa bakterier. Ozonbehandling av returslam förbättrade sedimenteringsegenskaperna hos svällande slam utan att påverka andra viktiga mikrobiologiska processer t.ex. nitrifikation.</p> / <p>Bulking sludge causes major problems in wastewater treatment plants that deal with biological nutrient removal in activated sludge processes. Bulking sludge is caused by filamentous bacteria, which have a negative impact on the sludge settling properties.</p><p>Himmerfjärden wastewater treatment plant suffers from this type of problem with bulking sludge which creates a stable layer at the surface that does not settle in the clarifier.</p><p>In order to solve this problem, on site generated ozone was used to decrease the amount of filamentous bacteria in the return activated sludge flow. Ozone is a strong oxidant is suitable for non-specific bulking control. It stresses the filamentous bacteria causing inactivation through cell wall disintegration.</p><p>The ozone treatment resulted in decreased abundance of filamentous bacteria. Ozone treatment of the recycled activated sludge improves the settling properties of bulking sludge, without interfering with other important microbiological processes e.g. nitrification.</p>
14

Ozone Technology for Sludge Bulking Control / Bekämpning av slamsvällning med ozonteknologi

Wijnbladh, Erik January 2007 (has links)
Slamsvällning orsakar stora problem i avloppsreningsverk med biologisk rening i aktivt slamprocesser. Slamsvällning orsakas av filamentösa (trådformiga) bakterier, som inverkar negativt på slammets sedimenteringsegenskaper. Himmerfjärdens vattenreningsverk har drabbats av detta problem som leder till ett stabilt lager av slam på ytan av sedimenteringsbassängen som inte sedimenterar. För att lösa detta problem behandlades returslammet från sedimenteringsbassängen med ozon för att minska mängden filamentösa bakterier i returslamflödet. Ozon är en starkt oxiderande gas, som är väl användbar för icke-specifik bekämpning av slamsvällning. När ozon kommer i kontakt med den filamentösa bakteriens cellvägg penetreras det in i cellen, varvid cellen lyserar. Ozonbehandlingen resulterade i en förminskning av antalet filamentösa bakterier. Ozonbehandling av returslam förbättrade sedimenteringsegenskaperna hos svällande slam utan att påverka andra viktiga mikrobiologiska processer t.ex. nitrifikation. / Bulking sludge causes major problems in wastewater treatment plants that deal with biological nutrient removal in activated sludge processes. Bulking sludge is caused by filamentous bacteria, which have a negative impact on the sludge settling properties. Himmerfjärden wastewater treatment plant suffers from this type of problem with bulking sludge which creates a stable layer at the surface that does not settle in the clarifier. In order to solve this problem, on site generated ozone was used to decrease the amount of filamentous bacteria in the return activated sludge flow. Ozone is a strong oxidant is suitable for non-specific bulking control. It stresses the filamentous bacteria causing inactivation through cell wall disintegration. The ozone treatment resulted in decreased abundance of filamentous bacteria. Ozone treatment of the recycled activated sludge improves the settling properties of bulking sludge, without interfering with other important microbiological processes e.g. nitrification.
15

Investigation Of Magnesium Ions Effect On Sludge Properties In Phosphorus Deficient Bioreactors

Unal, Eda 01 September 2010 (has links) (PDF)
The activated sludge process efficiency depends on separation of microbial cells from treated wastewater. Separation can fail due to a number of problems. One of these problems is sludge bulking which is non-settling situation of biomass. Former studies showed that phosphorus deficiency caused filamentous sludge bulking with increasing magnesium ion concentrations. The main objectives of this study are to find out the effect of magnesium ions on sludge properties in phosphorus deficient medium and to determine if there is any bulking. Three different concentrations of magnesium (0.5, 5, 15 meq/L) were added to three bioreactors which contained phosphorus deficient medium. In first set C: N: P ratio was 100:5:0.05. In second set, C:N:P ratio was elevated to 100:5:1. At steady state, physical characteristics including sludge volume index (SVI), viscosity, turbidity and dewaterability were determined. Besides concentration of extracellular polymeric substances (EPS) as well as conductivity was measured. By using API kits, bacterial identification was achieved. In first set phosphorus deficiency and increasing magnesium ion concentration caused filamentous bulking. Carbohydrate content of extracellular polymeric substance significantly increased by magnesium addition. Dewaterability of the system got worse and viscosity decreased. Sludge Volume Index (SVI) indicated severe bulking at all magnesium concentrations. By using biochemical tests microorganisms dominant in the system were determined In second set, all of the parameters indicated healthy flocculation. By magnesium addition, EPSp and EPSc increased. Dewaterability and settleability, improved by the presence of phosphorus with close values measured at different magnesiuim concentrations. Nocardia related genera of Corynebacterium and Enteric microorganisms were identified.
16

Bioflocculation Of Activated Sludge In Relation To Calcium Ion Concentration

Vatansever, Aysun 01 August 2005 (has links) (PDF)
Bioflocculation, which can be defined as aggregation of bacterial flocs, has important implications on the physical characteristics of sludge. It is especially critical to settling and dewatering systems which impacts the overall economy of the process greatly. One of the most common problems in activated sludge systems to negatively influence the settleability is sludge bulking which can be defined as non-settling situation of microbial mass. The first objective of this research is to investigate the effect of calcium ion on sludge bulking in a phosphorus deficient medium and the second objective is to improve the settling, dewatering, and pumping of activated sludge by adjusting the calcium (Ca) ion concentration of the feed. For this purpose, 7 semi-continuous laboratory scale activated sludge reactors were operated with a mixed aerobic culture. The reactors had 8 days of sludge residence time and aerated with air pumps to provide a dissolved oxygen concentration of at least 3 mg/L. All the analyses were conducted after the reactors reached steady state condition. In the first part of the research, the effect of strictly phosphorus-limited medium on bulking of activated sludge was studied at different calcium ion concentration. Three reactors were set up having 5, 10 and 20 meq/L calcium concentrations. From the results it was observed that, phosphorus deficiency caused viscous bulking independent from the calcium ion concentration. It was found out that bulking of activated sludges due to phosphorus deficiency could be cured by the addition of phosphorus. Furhermore, microorganisms starved for phosphorus, seemed to accumulate polyphosphate granules when they were exposed to a phosphorus source. In the second part of the study, the effect of calcium ion on physical, chemical and surface chemical properties of activated sludge was investigated at 4 different concentrations (0.27, 5, 10 and 20 meq/L) under sufficient phosphorus concentration. Calcium addition resulted in significant changes in the quantity and quality of extracellular polymeric substances (EPS). Total EPS increased depending on the calcium concentration. Carbohydrate content of EPS dominated over the protein content for calcium concentration of 5 meq/L and above. The amount of calcium ions incorporated into the sludge floc matrix also increased with the dose of calcium added. Settleability and dewaterability of sludge improved significantly at 5 meq/L dose of calcium. However, settleability did not change any further with increasing calcium dose, whereas dewaterability increased for all increasing calcium concentrations. Sludge viscosity also decreased considerably at 5 meq/L concentration indicating better pumpability but it did not change further above 10 meq/L calcium addition.
17

Investigation Of Activated Sludge Bioflocculation: Influence Of Magnesium Ions

Turtin, Ipek 01 September 2005 (has links) (PDF)
Activated sludge systems are the most widely used biological wastewater treatment processes all over the world. The main working principles of an activated sludge system are the oxidation of biologically degradable wastes by microorganisms and the subsequent separation of the newly formed biomass from the treated effluent. Separation by settling is the most troublesome stage of an activated sludge process. A decrease in the efficiency of the separation of microbial biomass from the treated effluent causes a decrease in the overall efficiency of the treatment plant. The efficiency of the separation process is related to the bioflocculation, which can be briefly defined as the aggregation of the bacteria into flocs through flocculation. Bioflocculation depends on the extracellular polymers (EPS) that are produced by microorganisms. The operating conditions of the activated sludge system is a key determinant of the synthesis of EPS and bioflocculation. The main objective of this study is to find out the effect of magnesium ions on the bioflocculation process under phosphorus deficient and sufficient conditions. In order to achieve this aim, the effects of magnesium ion in 4 different concentrations (0.9, 5, 10 and 20 meq/L) are investigated in semi continuous reactors. The reactors are operated at a mean cell residence time of 8 days and 20&ordm / C temperature. When reactors are confirmed to be at steady state, several sets of analysis are conducted. In particular, the surface chemical parameters including EPS and its components, electrical charge, and hydrophobicity as well as physical properties such as settlability, filterability, viscosity, floc strength, and turbidity are examined. It has been understood that phosphorus deficiency causes severe filamentous bulking under magnesium rich conditions. Increasing the phosphorus concentration in the influent can cure this problem. After the sludges are cured some granular structures were observed in the microscopic investigations and they are thought to be polyphosphate granules in which microorganisms tend to accumulate phosphorus when they find the adequate source after a starvation period. To consider the reactors operated at phosphate present conditions, it has been found that EPS increases with increasing influent magnesium concentration. However, protein type EPS (EPSP) exhibits a sharper increase when compared to the carbohydrate type EPS (EPSC) indicating the selective attitude of magnesium ions to protein type of polymers. It has been understood that the increase in the influent magnesium concentration results in an increase in dewaterability and zone settling velocity, and a decrease in the viscosity. Hydrophobicity was found to exhibit a maximum value at 10 meq/L magnesium fed sludge and then it dropped back. Surface charge values also made a minimum at 10 meq/L reactor and then no change occurred at the increase of the magnesium concentration to 20 meq/L. Finally, COD values were found to increase with the increasing magnesium concentration due to the increasing EPS.
18

Molecular characterization of filamentous bacteria isolated from full-scale activated sludge processes

Marrengane, Zinhle January 2007 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnolgy, Durban University of Technology, 2007 xviii, 143 leaves / Activated sludge flocs are responsible for flocculation, settling and dewaterability. It is important to maintain the growth off loc-forming bacteria for efficient sludge settleability and compaction for good quality effluent. Filamentous bacteria on the other hand are believed to provide rigid support network or backbone upon which floc-forming bacteria adhere to form stable activated sludge flocs (Wilderer et al., 2002; Ramothokang et al., 2003). Filamentous bacteria can also be detrimental to the process when they outgrow floc-forming bacteria. Morphologically filamentous bacteria are at an advantage as they have higher outward growth velocity and can extend freely to bulk liquid substrate. Proliferation of filamentous bacteria causes foaming and bulking (Martins et al., 2004). Although chemical alleviation measures to circumvent bulking are present, they are symptomatic (Chang et al., 2004). Eikelboom (1975) developed the first identification keys for the classification of filamentous bacteria that is primarily based on morphological characteristics and microscopic examination. Although very useful, this type of identification has its limitations. For instance some filamentous bacteria can change morphology in response to changes in the environment and although some of them can be morphologically similar they may vary considerably in their physiology and taxonomy (Martins et al., 2004). A vast number of filamentous bacteria are still very poorly understood which could be due to the problems of cultivation due to their slow growing nature and maintenance of cultures (Rossetti et al., 2006). This limitation necessitates a molecular approach to resolve the taxonomy of filamentous bacteria as it is a culture-independent technique which is highly accurate. This project was undertaken to verify the identity of pure cultures of filamentous bacteria isolated previously through the application of molecular techniques. The 16S rDNA are conserved regions in bacterial cells and they can be extracted and specific nucleic acid fragments amplified. Denaturation gradient gel electrophoresis enabled the separation of fragments of identical length but different size and served as an indication of purity (Muyzer et al., 1993).
19

Molecular characterization of filamentous bacteria isolated from full-scale activated sludge processes

Marrengane, Zinhle January 2007 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnolgy, Durban University of Technology, 2007 xviii, 143 leaves / Activated sludge flocs are responsible for flocculation, settling and dewaterability. It is important to maintain the growth off loc-forming bacteria for efficient sludge settleability and compaction for good quality effluent. Filamentous bacteria on the other hand are believed to provide rigid support network or backbone upon which floc-forming bacteria adhere to form stable activated sludge flocs (Wilderer et al., 2002; Ramothokang et al., 2003). Filamentous bacteria can also be detrimental to the process when they outgrow floc-forming bacteria. Morphologically filamentous bacteria are at an advantage as they have higher outward growth velocity and can extend freely to bulk liquid substrate. Proliferation of filamentous bacteria causes foaming and bulking (Martins et al., 2004). Although chemical alleviation measures to circumvent bulking are present, they are symptomatic (Chang et al., 2004). Eikelboom (1975) developed the first identification keys for the classification of filamentous bacteria that is primarily based on morphological characteristics and microscopic examination. Although very useful, this type of identification has its limitations. For instance some filamentous bacteria can change morphology in response to changes in the environment and although some of them can be morphologically similar they may vary considerably in their physiology and taxonomy (Martins et al., 2004). A vast number of filamentous bacteria are still very poorly understood which could be due to the problems of cultivation due to their slow growing nature and maintenance of cultures (Rossetti et al., 2006). This limitation necessitates a molecular approach to resolve the taxonomy of filamentous bacteria as it is a culture-independent technique which is highly accurate. This project was undertaken to verify the identity of pure cultures of filamentous bacteria isolated previously through the application of molecular techniques. The 16S rDNA are conserved regions in bacterial cells and they can be extracted and specific nucleic acid fragments amplified. Denaturation gradient gel electrophoresis enabled the separation of fragments of identical length but different size and served as an indication of purity (Muyzer et al., 1993).

Page generated in 0.0642 seconds