Spelling suggestions: "subject:"small angle X-Ray cattering"" "subject:"small angle X-Ray acattering""
21 |
SHORT - RANGE ORDER IN THE NEMATIC PHASE OF REDUCED SYMMETRYTHERMOTROPIC MESOGENSChakraborty, Saonti 06 December 2013 (has links)
No description available.
|
22 |
INTERFACE MORPHOLOGY AND PHASE SEPARATION IN POLYMER DISPERSED LIQUID CRYSTAL (PDLC) COMPOSITESJUSTICE, RYAN SCOTT January 2006 (has links)
No description available.
|
23 |
INTERFACIAL MODIFICATION FOR THE REINFORCEMENT OF SILICONE ELASTOMER COMPOSITESVu, Bich Thi Ngoc 11 October 2001 (has links)
No description available.
|
24 |
CHARACTERIZING THE STRUCTURE AND FUNCTION OF A NOVEL NUCLEOID-ASSOCIATED PROTEIN sIHFNanji, Tamiza 11 1900 (has links)
All living organisms must organize their genome so that it not only fits within the cell, but remains accessible for cellular processes. In bacteria, an arsenal of nucleoid-associated proteins contributes to chromosome condensation. A novel nucleoid-associated protein was recently discovered in actinobacteria, and is essential in Mycobacterium. It was classified as an integration host factor protein (IHF); however, it does not share sequence or structural homology with the well characterized Escherichia coli IHF. In this study, we characterize the structure and function of Streptomyces coelicolor IHF (sIHF). We have used a combination of biochemistry and structural biology to characterize the role of sIHF in DNA binding and DNA topology. We have solved crystal structures of sIHF bound to various double-stranded DNA substrates, and show that sIHF is able to contact DNA at multiple surfaces. Furthermore, sIHF inhibits the activity of TopA, impacting DNA topology in vitro. Our work demonstrates that sIHF is a novel nucleoid-associated protein with key roles in condensing DNA. We believe that sIHF performs its function by differentially using multiple nucleic-acid binding surfaces. Further characterization is required to confirm this hypothesis in vivo. Given that the Mycobacterium homolog of sIHF (mIHF) is essential, our studies lay the foundation to explore novel drug targets for Mycobacterium tuberculosis and Mycobacterium leprae. / Thesis / Master of Science (MSc) / Unconstrained, the bacterial genome exceeds the size of the cell by 1 000- 10 000 times; thus, compacting it into a condensed structure, known as the nucleoid, is essential for life. An arsenal of nucleoid-associated proteins contributes to this process. In this study, we characterize the structure and function of a novel nucleoid–associated protein from the soil dwelling organism Streptomyces coelicolor. We used a combination of genetics, biochemistry, and structural biology to characterize the role of this protein in DNA binding and nucleoid organization. Since this protein is also found in important human pathogens, this work lays the foundation to explore the use of nucleoid-associated proteins as antimicrobial drug targets.
|
25 |
Morphology-Property Relationships in Semicrystalline Aerogels of Poly(ether ether ketone)Talley, Samantha J. 03 December 2018 (has links)
The phase diagrams for the thermoreversible gelation of poly(ether ether ketone) (PEEK) in dichloroacetic acid (DCA) and 4-chlorophenol (4CP) were constructed over broad temperature and concentration ranges, revealing that PEEK is capable of dissolving and forming gels in DCA and 4CP up to a weight fraction of 25 wt.%. Highly porous aerogels of PEEK were prepared through simple solvent exchange and solvent removal of the PEEK/DCA or PEEK/4CP gels. Solvent removal utilized freeze-drying (sublimation) methods or supercritical CO2 drying methods. Varying the weight fraction of PEEK dissolved in solution determined PEEK aerogel density. Mechanical properties (in compression) were shown to improve with increasing density, resulting in equivalent compressive moduli at comparable density regardless of preparation method (concentration variation, gelation solvent, solvent removal method, or annealing parameters). Additionally, density-matched aerogels from various MW PEEK showed a correlation between increasing MW and increasing compressive modulus. Contact angle and contact angle hysteresis revealed that PEEK aerogels have a high contact angle, exceeding the conditions necessary to be classified as superhydrophobic materials. PEEK aerogel contact angle decreases with increasing density and a very low contact angle hysteresis that increases with increasing density, regardless of gelation solvent or drying method. Small angle neutron scattering (SANS) contrast-matching experiments were used to elucidate the morphological origin of scattering features, wherein it was determined that the origin of the scattering feature present in the small angle scattering region was stacked crystalline lamella. Ultra-small angle X-ray scattering (USAXS)/SAXS/Wide angle X-ray scattering (WAXS) was then used to probe the hierarchical nanostructure of PEEK aerogels across a broad range of length scales. The Unified Fit Model was used to extract structural information, which was then used to determine the specific surface areas of PEEK aerogels. Regardless of gelation solvent, gel concentration, or solvent removal method, all PEEK aerogels display high surface areas as determined by SAXS and high surface areas as determined by nitrogen adsorption methods. Surface area values determined from SAXS data were consistently higher than that measured directly using nitrogen adsorption, suggesting that pore densification diminishes the accessible aerogel surface area. / Ph. D. / Poly(ether ether ketone) (PEEK) is a semicrystalline polymer with high temperature thermal transitions and excellent mechanical strength, making it an ideal candidate for many high-performance polymer applications. When PEEK is dissolved in particular solvents, it will form a 3-dimensional network where crystalline polymer is the cross-linking unit of the network. Careful solvent removal does not significantly perturb the gel network structure and produces a low-density aerogel. This work details the first reported instance of the monolithic gelation of PEEK and the first examples of PEEK aerogels. The nanostructure of these gels and aerogels is fully characterized to relate structural features to physical properties such as mechanical stiffness and wettability.
|
26 |
Complementary light scattering and synchrotron small-angle X-ray scattering studies of the micelle-to-unimer transition of polysulfobetainesDoncom, K.E.B., Pitto-Barry, Anaïs, Willcock, H., Lu, A., McKenzie, B.E., Kirby, N., O'Reilly, R.K. 19 March 2015 (has links)
Yes / AB and ABA di- and triblock copolymers where A is the hydrophilic poly(oligoethylene glycol methacrylate) (POEGMA) block and B is a thermo-responsive sulfobetaine block [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (PDMAPS) were synthesised by aqueous RAFT polymerisation with narrow dispersity (ĐM ≤ 1.22), as judged by aqueous SEC analysis. The di- and triblock copolymers self-assembled in salt-free water to form micelles with a PDMAPS core and the self-assembly of these polymers was explored by SLS and TEM analysis. The micelles were shown, by DLS analysis, to undergo a micelle-to-unimer transition at a critical temperature, which was dependent upon the length of the POEGMA block. Increasing the length of the third, POEGMA, block decreased the temperature at which the micelle-to-unimer transition occurred as a result of the increased hydrophilicity of the polymer. The dissociation of the micelles was further studied by SLS and synchrotron SAXS. SAXS analysis revealed that the micelle dissociation began at temperatures below that indicated by DLS analysis and that both micelles and unimers coexist. This highlights the importance of using multiple complementary techniques in the analysis of self-assembled structures. In addition the micelle-to-unimer morphology transition was employed to encapsulate and release a hydrophobic dye, Nile Red, as shown by fluorescence spectroscopy. / Engineering and Physical Sciences Research Council (EPSRC), University of Warwick
|
27 |
RAFT dispersion polymerization : a method to tune the morphology of thymine-containing self-assembliesKang, Y., Pitto-Barry, Anaïs, Maitland, A., O'Reilly, R.K. 11 June 2015 (has links)
Yes / The synthesis and self-assembly of thymine-containing polymers were performed using RAFT dispersion polymerization. A combination of microscopy and scattering techniques was used to analyze the resultant complex morphologies. The primary observation from this study is that the obtained aggregates induced during the polymerization were well-defined despite the constituent copolymers possessing broad dispersities. Moreover, a variety of parameters, including the choice of polymerization solvent, the degree of polymerization of both blocks and the presence of an adenine-containing mediator, were observed to affect the resultant size and shape of the assembly. / University of Warwick, National Science Foundation (U.S.) (NSF), Engineering and Physical Sciences Research Council (EPSRC)
|
28 |
Biochemical Characterization of Human Guanylate Kinase and Mitochondrial Thymidine Kinase: Essential Enzymes for the Metabolic Activation of Nucleoside Analog ProdrugsKhan, Nazimuddin 05 February 2015 (has links)
No description available.
|
29 |
Tracking Assembly Kinetics of Intermediate FilamentsSaldanha, Oliva 22 April 2016 (has links)
No description available.
|
30 |
Auto-inhibition mechanism of the guanine nucleotide exchange factor Tiam1Xu, Zhen 01 August 2016 (has links)
The Rho family of guanosine triphosphatases (GTPases) function as binary molecular switches, which play an important role in the regulation of actin cytoskeleton rearrangement and are involved in several critical cellular processes including cell adhesion, division and migration. Rho GTPases are specifically activated by their associated guanine nucleotide exchange factors (RhoGEFs). Dysregulation of RhoGEFs function through mutation or overexpression has been implicated in oncogenic transformation of cells and linked to several kinds of invasive and metastatic forms of cancer. T-cell lymphoma invasion and metastasis 1 (Tiam1) is a multi-domain Dbl family GEF protein and specifically activates Rho GTPase Rac1 through the catalytic Dbl homology and Pleckstrin homology (DH-PH) bi-domain. Previous works have shown that the nucleotide exchange function of the full-length Tiam1 is auto-inhibited and can be activated by N-terminal truncation, phosphorylation and protein-protein interactions. However, the molecular mechanisms of Tiam1 GEF auto-inhibition and activation have not yet been determined. In this study, the N-terminal PH-CC-Ex domain of Tiam1 is shown to directly inhibit the GEF function of the catalytic DH-PH domain in vitro. Using fluorescencebased kinetics experiments, we demonstrate that the auto-inhibition of Tiam1 GEF function occurs by a competitive inhibition model. In this model, the maximum velocity of catalytic activity remains unchanged, but the Michaelis-Menten constant of the auto-inhibited Tiam1 (the PH-PH fragment) on the substrate Rac1 is increased compared to the activated Tiam1 (the catalytic DH-PH domain alone). Through small angle X-ray scattering (SAXS), the structure of auto-inhibited Tiam1 (the PH-PH fragment) is shown to form a closed conformation in which the catalytic DH-PH domain is blocked by the N-terminal PH-CC-Ex domain. Taken together, these findings demonstrate the molecular mechanism of Tiam1 GEF autoinhibition in which the PH-CC-Ex domain of Tiam1 inhibits its GEF function by preventing the substrate Rho GTPase Rac1 from accessing the catalytic DH-PH bi-domain.
|
Page generated in 0.1064 seconds