• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mapeamento das bases estruturais e suas correlações com patogenias humanas associadas à mutações na fumarase humana / Mapping the structural basis and its correlation with human pathogenesis associated with human fumarase mutations

Aleixo, Mariana Araújo Ajalla 19 October 2018 (has links)
Fumarato hidratases ou fumarases (FH) catalisam a reação estereoespecífica reversível de hidratação do fumarato em L-malato. Essas enzimas se apresentam em todas as classes de organismos, desde procariotos a eucariotos, e podem ser encontradas nas formas mitocondrial e citosólica. A enzima tem papel importante na produção de energia pois participa do ciclo do ácido cítrico, na resposta ao dano do DNA e como supressor tumoral. A fumarase humana (HsFH), que pertence à classe II, é codificada pelo gene 1q42.1, possui 467 aminoácidos em cada monômero com peso molecular de 50,2 kDa cada. Estudos associaram mutações no gene da FH com diversas doenças humanas como acidúria fumárica, leiomiomatoses de útero e pele (MCUL), que quando associadas com um agressivo carcinoma múltiplo de células é conhecido como leiomiomatose hereditária e câncer renal (HLRCC). Apesar da grande importância da fumarase humana no metabolismo energético, ainda há pouca informação em relação ao mecanismo catalítico adotado pela enzima e o efeito estrutural e cinético causado pelas mutações envolvidas com essas doenças. Diante disso, nosso trabalho utilizou uma abordagem híbrida que envolve a caracterização biofísica, bioquímica e estrutural da enzima HsFH, e seus mutantes: N107THsFH, H180RHsFH, Q185RHsFH, K230RHsFH, G282VHsFH, E362QHsFH, S365GHsFH e N373DHsFH, identificados em pacientes. Estudos cinéticos foram realizados em sete diferentes pHs e, pela primeira vez para fumarases, o ensaio foi realizado com os dois substratos presentes na mesma mistura reacional, confirmando a contribuição da reação reversa para a velocidade global da enzima. De acordo com os estudos de termoflúor a proteína é estabilizada em pHs alcalinos e através da ligação de compostos no sítio ativo. A estrutura da enzima HsFH nativa foi resolvida a 1,8 Å e identificou a presença de moléculas de HEPES complexadas na região C-terminal da enzima. Os estudos cinéticos demonstraram um aumento da eficiência catalítica na presença do HEPES, sugerindo um possível papel alostérico de seu sítio de ligação para a atividade catalítica. Foram determinadas as estruturas para os mutantes N107THsFH, H180RHsFH, Q185RHsFH, K230RHsFH, E362QHsFH, S365GHsFH e N373DHsFH. As mutações Q185R, E362Q, S365G e N373D foram identificadas no sítio ativo afetando diretamente a capacidade da proteína em ligar os substratos, enquanto que a mutação H180R foi localizada no sítio B, que conduz os substratos e produtos para dentro e fora do sítio ativo. Já a mutação K230R está localizada no domínio central, mas os resultados de termoflúor demonstram um efeito direto na capacidade da enzima em acomodar o substrato. A mutação N107T, localizada longe do sítio ativo foi a única que permaneceu ativa e teve seus parâmetros cinéticos residuais determinados. O presente trabalho contribui para o entendimento das bases estruturais que correlacionam mutações na HsFH, deficiência enzimática e patologia. / Fumarate hydratases or fumarases (FH) catalyze the reversible stereospecific hydration of fumarate to L-malate. They are present in all classes of organisms, from prokaryotes to eukaryotes, and can be found in the mitochondrial and cytosolic forms. The enzyme has an important role in energy production as part of the well-known Citric Acid Cycle, in DNA damage response and as tumor suppressor. Human fumarase (HsFH) belongs to class II and is encoded by 1q42.1 gene. HsFH is tetrameric and has 467 amino acids per monomer, with predicted molecular weight of 50.2 kDa. Several studies associated FH gene mutations with some human diseases such as fumaric aciduria, multiple cutaneous and uterine leiomyomatosis (MCUL), which when associated with an aggressive form of multiple cell carcinoma is known as hereditary leiomyomatosis and renal cancer (HLRCC) syndrome. Although the major role of HsFH in energetic metabolism, there are still little structural and kinetic information about the mutants involved in these diseases. Thus, this study aims, through a hybrid approach, composed by biophysics, biochemical and structural characterization of mutants N107THsFH, H180RHsFH, Q185RHsFH, K230RHsFH, G282VHsFH, E362QHsFH, S365GHsFH and N373DHsFH identified from patients. Steady-state kinetics studies were performed in seven different pHs and, for the first time, the contribution of both substrates was analyzed simultaneously in a single kinetic assay and allowed to quantify the contribution of the reverse reaction for kinetics. According to thermofluor studies, structural stability can be achieved at alkaline pHs and suggests that ligand binding can modulate the protein stability. HsFH crystal structure was solved at 1.8 Å resolution and identified HEPES molecules complexed with the enzyme C-terminal region. Kinetics studies with HEPES showed an increase of the catalytic efficiency and suggests that HEPES binding site might have an allosteric role. Crystal structures for the mutants N107THsFH, H180RHsFH, Q185RHsFH, K230RHsFH, E362QHsFH, S365GHsFH and N373DHsFH were determined. The mutations Q185R, E362Q, S365G and N373D were identified in the active site and affect the substrate binding capacity directly, while mutation H180R was localized in the B site, which conducts the substrates and products in and out the active site. The mutation K230R is localized in the central domain, but thermofluor results demonstrate a direct effect on the ability of the enzyme to accommodate the substrate. The N107T mutation located far from the active site was the only one that remained active and had its residual kinetic parameters determined. The present work contributes to the understanding of the structural bases that correlate mutations in HsFH, enzymatic deficiency and pathology.
2

Sistemas miméticos de vesículas da matriz: correlação entre microambiente lipídico e a atividade da fosfatase alcalina no processo de biomineralização / Matrix Vesicle Membrane Systems: Correlation between Lipid microenvironment and the activity of Alkaline Phosphatase in the Biomineralization process

Bruno Zoccaratto Favarin 05 October 2018 (has links)
A mineralização do esqueleto começa dentro de vesículas matriz derivadas de células (MVs); então, os minerais se propagam para a matriz de colágeno extracelular. A fosfatase alcalina não específica de tecido (TNAP) degrada o pirofosfato inorgânico (PPi), um potente inibidor da mineralização, quee contribui com Pi (Fosfato) de ATP para iniciar a mineralização. Em comparação com a membrana plasmática, as MVs são ricas em Colesterol (Chol) (32%) e TNAP, mas como o Chol influencia a atividade da TNAP ainda não está claro. Nós reconstituímos TNAP em lipossomos de dipalmitoilfosfatidilcolina (DPPC), dimiristoilfosfocolina (DMPC) dioleoilfosfatidilcolina (DOPC) combinada com Chol ou seus derivados Colestenona (Achol) e Ergosterol (Ergo). Comparamos as propriedades cinéticas: Velocidade máxima de hidrólise (Vmax), constante de afinidade (k0,5), cooperatividade (n) e eficiência catalítica (kcat / k0,5) da TNAP para os substratos fisiológicos ATP e PPi, quando o TNAP é incorporada nestes diferentes microambientes lípidicos. O DPPC mais 36% de esteróis em lipossomos aumentaram a atividade catalítica do TNAP em relação ao ATP. A presença de Chol também aumentou a propagação de minerais em 3,4 vezes. A eficiência catalítica da TNAP em relação ao ATP foi quatro vezes menor nos proteolipossomos de DOPC, em comparação aos proteolipossomos do DPPC. Os proteolipossomos DOPC também aumentaram a biomineralização 2,8 vezes em comparação com os proteolipossomos de DPPC. O TNAP catalisou a hidrólise do ATP mais eficientemente no caso do proteolipossomo consistindo em DOPC com 36% de Chol. O mesmo comportamento surgiu com Achol e Ergo. A organização do lipídio e a estrutura do esterol influenciaram a tensão superficial (), a atividade fosfohidrolítica do TNAP na monocamada e a eficiência catalítica do TNAP nas bicamadas. Membranas na fase L (Achol) proporcionaram melhores parâmetros cinéticos em relação às membranas na fase Lo (Chol e Ergo). a presença de SM ou Chol: SM 90:10 (mol%), proteolipossomos DPPC não alterou os valores de eficiência catalítica, para a hidrólise do ATP. No entanto, estes proteolipossomos aumentaram a propagação mineral em cerca de 4,5 e 8 vezes, respectivamente, em comparação com DPPC puro. O aumento na eficiência catalítica para proteolipossomos contendo DMPC: SM 90:10 e DMPC: Chol: SM 80:10:10 (% molar) foi observado. Em conclusão, as propriedades físicas e a organização lateral de lipídios em proteolipossomas são cruciais para o controle. propagação mineral mediada pela atividade da TNAP durante a mineralização / Mineralization of the skeleton starts within cell-derived matrix vesicles (MVs); then, minerals propagate to the extracellular collagenous matrix. Tissuenonspecific alkaline phosphatase (TNAP) degrades inorganic pyrophosphate (PPi), a potent inhibitor of mineralization, and contributes Pi (Phosphate) from ATP to initiate mineralization. Compared to the plasma membrane, MVs are rich in Cholesterol (Chol) (32%) and TNAP, but how Chol influences TNAP activity remains unclear. We have reconstituted TNAP in liposomes of dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphocholine (DMPC) dioleoylphosphatidylcholine (DOPC) combined with Chol or its derivatives Cholestenone (Achol) and Ergosterol (Ergo). We compare the kinetic properties: maximum rate of hydrolysis (Vmax), affinity constant (k0,5), cooperativity (n) and catalytic efficiency (kcat / k0,5) of TNAP for the physiological substrates ATP and PPi, when TNAP is incorporated in these different microenvironments lipids. DPPC plus 36% sterols in liposome increased the catalytic activity of TNAP toward ATP. The presence of Chol also increased the propagation of minerals by 3.4-fold. The catalytic efficiency of TNAP toward ATP was fourfold lower in DOPC proteoliposomes as compared to DPPC proteoliposomes. DOPC proteoliposomes also increased biomineralization by 2.8-fold as compared to DPPC proteoliposomes. TNAP catalyzed the hydrolysis of ATP more efficiently in the case of the proteoliposome consisting of DOPC with 36% Chol. The same behavior emerged with Achol and Ergo. The organization of the lipid and the structure of the sterol influenced the surface tension (), the TNAP phosphohydrolytic activity in the monolayer, and the TNAP catalytic efficiency in the bilayers. Membranes in the L phase (Achol) provided better kinetic parameters as compared to membranes in the Lo phase (Chol and Ergo). The presence of SM or Chol:SM 90:10 (mol%), DPPC-proteoliposomes did not alter the catalytic efficiency values, for the ATP hydrolysis. However, these proteoliposomes increased the mineral propagation by about 4.5 and 8-fold, respectively, compared to neat DPPC. The increase in catalytic efficiency for proteoliposomes containing DMPC:SM 90:10 and DMPC:Chol:SM 80:10:10 (mol%) was observed. In conclusion, the physical properties and the lateral organization of lipids in proteoliposomes are crucial to control mineral propagation mediated by TNAP activity during mineralization
3

Sistemas miméticos de vesículas da matriz: correlação entre microambiente lipídico e a atividade da fosfatase alcalina no processo de biomineralização / Matrix Vesicle Membrane Systems: Correlation between Lipid microenvironment and the activity of Alkaline Phosphatase in the Biomineralization process

Favarin, Bruno Zoccaratto 05 October 2018 (has links)
A mineralização do esqueleto começa dentro de vesículas matriz derivadas de células (MVs); então, os minerais se propagam para a matriz de colágeno extracelular. A fosfatase alcalina não específica de tecido (TNAP) degrada o pirofosfato inorgânico (PPi), um potente inibidor da mineralização, quee contribui com Pi (Fosfato) de ATP para iniciar a mineralização. Em comparação com a membrana plasmática, as MVs são ricas em Colesterol (Chol) (32%) e TNAP, mas como o Chol influencia a atividade da TNAP ainda não está claro. Nós reconstituímos TNAP em lipossomos de dipalmitoilfosfatidilcolina (DPPC), dimiristoilfosfocolina (DMPC) dioleoilfosfatidilcolina (DOPC) combinada com Chol ou seus derivados Colestenona (Achol) e Ergosterol (Ergo). Comparamos as propriedades cinéticas: Velocidade máxima de hidrólise (Vmax), constante de afinidade (k0,5), cooperatividade (n) e eficiência catalítica (kcat / k0,5) da TNAP para os substratos fisiológicos ATP e PPi, quando o TNAP é incorporada nestes diferentes microambientes lípidicos. O DPPC mais 36% de esteróis em lipossomos aumentaram a atividade catalítica do TNAP em relação ao ATP. A presença de Chol também aumentou a propagação de minerais em 3,4 vezes. A eficiência catalítica da TNAP em relação ao ATP foi quatro vezes menor nos proteolipossomos de DOPC, em comparação aos proteolipossomos do DPPC. Os proteolipossomos DOPC também aumentaram a biomineralização 2,8 vezes em comparação com os proteolipossomos de DPPC. O TNAP catalisou a hidrólise do ATP mais eficientemente no caso do proteolipossomo consistindo em DOPC com 36% de Chol. O mesmo comportamento surgiu com Achol e Ergo. A organização do lipídio e a estrutura do esterol influenciaram a tensão superficial (), a atividade fosfohidrolítica do TNAP na monocamada e a eficiência catalítica do TNAP nas bicamadas. Membranas na fase L (Achol) proporcionaram melhores parâmetros cinéticos em relação às membranas na fase Lo (Chol e Ergo). a presença de SM ou Chol: SM 90:10 (mol%), proteolipossomos DPPC não alterou os valores de eficiência catalítica, para a hidrólise do ATP. No entanto, estes proteolipossomos aumentaram a propagação mineral em cerca de 4,5 e 8 vezes, respectivamente, em comparação com DPPC puro. O aumento na eficiência catalítica para proteolipossomos contendo DMPC: SM 90:10 e DMPC: Chol: SM 80:10:10 (% molar) foi observado. Em conclusão, as propriedades físicas e a organização lateral de lipídios em proteolipossomas são cruciais para o controle. propagação mineral mediada pela atividade da TNAP durante a mineralização / Mineralization of the skeleton starts within cell-derived matrix vesicles (MVs); then, minerals propagate to the extracellular collagenous matrix. Tissuenonspecific alkaline phosphatase (TNAP) degrades inorganic pyrophosphate (PPi), a potent inhibitor of mineralization, and contributes Pi (Phosphate) from ATP to initiate mineralization. Compared to the plasma membrane, MVs are rich in Cholesterol (Chol) (32%) and TNAP, but how Chol influences TNAP activity remains unclear. We have reconstituted TNAP in liposomes of dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphocholine (DMPC) dioleoylphosphatidylcholine (DOPC) combined with Chol or its derivatives Cholestenone (Achol) and Ergosterol (Ergo). We compare the kinetic properties: maximum rate of hydrolysis (Vmax), affinity constant (k0,5), cooperativity (n) and catalytic efficiency (kcat / k0,5) of TNAP for the physiological substrates ATP and PPi, when TNAP is incorporated in these different microenvironments lipids. DPPC plus 36% sterols in liposome increased the catalytic activity of TNAP toward ATP. The presence of Chol also increased the propagation of minerals by 3.4-fold. The catalytic efficiency of TNAP toward ATP was fourfold lower in DOPC proteoliposomes as compared to DPPC proteoliposomes. DOPC proteoliposomes also increased biomineralization by 2.8-fold as compared to DPPC proteoliposomes. TNAP catalyzed the hydrolysis of ATP more efficiently in the case of the proteoliposome consisting of DOPC with 36% Chol. The same behavior emerged with Achol and Ergo. The organization of the lipid and the structure of the sterol influenced the surface tension (), the TNAP phosphohydrolytic activity in the monolayer, and the TNAP catalytic efficiency in the bilayers. Membranes in the L phase (Achol) provided better kinetic parameters as compared to membranes in the Lo phase (Chol and Ergo). The presence of SM or Chol:SM 90:10 (mol%), DPPC-proteoliposomes did not alter the catalytic efficiency values, for the ATP hydrolysis. However, these proteoliposomes increased the mineral propagation by about 4.5 and 8-fold, respectively, compared to neat DPPC. The increase in catalytic efficiency for proteoliposomes containing DMPC:SM 90:10 and DMPC:Chol:SM 80:10:10 (mol%) was observed. In conclusion, the physical properties and the lateral organization of lipids in proteoliposomes are crucial to control mineral propagation mediated by TNAP activity during mineralization
4

Estudo de metabolismo in vitro e inibição enzimática do produto natural Licarina A empregando microssomas hepático de humanos / In vitro metabolism and enzymatic inhibition study of the natural product Licarin A employing human liver microsomes.

Fortes, Simone Silveira 08 August 2017 (has links)
FORTES, S.S. Estudo de metabolismo in vitro e inibição enzimática do produto natural Licarina A empregando microssomas hepático de humanos. 2017. Tese (Doutorado) - Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2017. Muitos fármacos comercializados tiveram sua origem em produtos naturais e seus derivados. Devido ao grande potencial farmacológico destas novas moléculas pesquisadas, uma etapa importante e inicial no desenvolvimento de um novo fármaco é a avaliação do seu comportamento frente as enzimas do citocromo P450 (CYP 450), incluindo os estudos de interações medicamentosas. Neste contexto, um substrato que merece destaque é a Licarina A (Lic A). Este composto é uma neolignana encontrada em algumas espécies de plantas e vêm demonstrando várias propriedades biológicas promissoras, dentre elas destaca-se a atividade anti-leishimania. No entanto, para que esta substância com comprovada atividade se torne um fármaco é necessário realizar, na fase pré-clínica, estudos sobre seu perfil metabólico frente às enzimas do CYP450 e estudos de interação medicamentosa. Portanto, esta Tese teve como objetivo determinar os parâmetros enzimáticos utilizando microssomas hepáticos de humanos através do estudo de metabolismo in vitro com esta molécula e realizar estudos de interação medicamentosa através dos estudos de inibição enzimática e pesquisar a isoforma do CYP450 que metaboliza predominantemente este produto natural através do emprego de enzimas recombinantes de humanos. Primeiramente, foi desenvolvido um método analítico para a determinação do produto natural Licarina A em meio microssomal. As análises foram realizadas por cromatografia liquida de alta eficiência empregando a coluna Ascentis C18 e fase móvel composta por metanol: solução aquosa de ácido fórmico 0,1% (75:25, v/v); a vazão empregada foi de 1,0 mL min-1. O método foi validado na faixa de concentração de 0,383 a 76,65 ?mol L-1, com coeficiente de correlação linear de 0,99 e limite de quantificação de 0,383 ?mol L-1. A precisão e exatidão apresentaram resultados dentro do recomendável pela ANVISA. Após validação do método, estabeleceram-se as condições lineares para a depleção da Lic A no meio microssomal e posteriormente, a cinética foi determinada em condições de velocidade inicial utilizando para tanto 0,20 mg mL-1 de concentração de proteínas microssomais e 20 minutos de tempo de incubação. O comportamento observado na cinética enzimática para a depleção da Lic A foi um comportamento atípico, caracterizada pelo modelo cinético de Hill. Os valores de Vmax, S50 e coeficiente de Hill foram, 1,651 ?mol mg-1 min-1, 3,87 ?mol L-1 e 2,0 respectivamente. A partir dos parâmetros cinéticos o valor de clearance intrínseco (CLint) para a Lic A foi de 0,22 mL min-1 mg-1. Posteriormente, a correlação in vitro in vivo foi realizada e foi observado um clareance hepático (CLhep) de 20 mL min-1 kg-1 e taxa de extração hepática (E) de 1. As isoformas do CYP450 envolvidas no metabolismo da Lic A foram CYP 1A2 e 2B6. Os estudos de inibição mostraram que a Lic A é um inibidor fraco frente as isoformas do CYP450 estudadas, com valores de IC50 maiores do que 80 ?mol L-1. Embora já tenha sido estudada diferentes vias metabólicas da licarina A com vários metabólitos identificados, esta foi a primeira vez que foi observado a formação de um metabólito in vitro com o uso de microssomas hepático humano. Com o auxílio da espectrometria de massa foi possível a identificação do metabólito de m/z 343 [M+H]+, possivelmente um composto epoxidado, da licarina A. / FORTES, S.S. In vitro metabolism and enzymatic inhibition study of the natural product Licarin A employing human liver microsomes. 2017. Thesis (Doctoral) - Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2017. Many marketed drugs had their origin in natural products and their derivatives. Due to the biological potential of these new molecules, an important initial step in the development of a new drug is the evaluation of its behavior in front of cytochrome P450 enzymes (CYP 450), including studies of drug interactions. In this context, a substrate that deserves attention is Licarin A (Lic A). This compound is a neolignan found in some species of plants and several promising biological properties have been describing for this natural product, among them anti-leishimania activity. However, for this substance to become a drug, it is necessary to perform, in the preclinical phase, studies regarding its metabolic profile and drug interactions. Therefore, this thesis aimed to determine the enzymatic parameters by using human liver microsomes through in vitro metabolism study with this molecule and to conduct drug interaction studies through the enzyme inhibition studies and finally, to investigate the CYP450 isoforms that metabolize predominantly this natural product through the use of recombinant human enzymes. Firstly, an analytical method was developed for the quantification of the natural product Licarin A in microsomal medium. The analyzes were performed by high performance liquid chromatography employing an Ascentis C18 column and mobile phase composed of methanol: 0.1% formic acid aqueous solution (75:25, v / v); the flow rate used was 1.0 mL min-1. The method was validated in the concentration range of 0.333 to 76.65 ?mol L-1, with a linear correlation coefficient of 0.99 and a quantification limit of 0.333 ?mol L-1. Accuracy and precision showed results in agreement with ANVISA guidelines. After method validation, the linear conditions for depletion of Lic A in the microsomal medium were established. Subsequently, the kinetics were determined under initial velocity conditions using 0.20 mg mL-1 of microsomal protein concentration and 20 minutes of incubation time. The behavior observed in the enzymatic kinetics for the depletion of Lic A was an atypical behavior, characterized by the Hill kinetic model. The values of Vmax, S50 and Hill coefficient were 1.651 ?mol mg-1 min-1, 3.87 ?mol L-1 and 2.0, respectively. From the kinetic parameters, the intrinsic clearance (CLint) for Lic A was 0.22 mL min-1 mg-1. Subsequently, in vitro in vivo correlation was performed and a hepatic clareance (CLhep) of 20 mL min-1 kg-1 and a hepatic extraction rate (E) of 1 was observed. The CYP450 isoforms involved in the metabolism of Lic A were CYP 1A2 and 2B6. Inhibition studies have shown that Lic A is a weak CYP450 inhibitor, with IC50 values greater than 80 ?mol L-1. Although different metabolic pathways of licanin A have been studied and several metabolites were identified, this is the first report about the formation of an in vitro metabolite after metabolism by human liver microsomes. With the aid of mass spectrometry it was possible to identify the metabolite of m/z 343 [M+H]+, possibly an epoxidized compound, of licanin A.
5

Caracterização cinética e molecular da (Na+,K+)-ATPase do tecido branquial do caranguejo Cardisoma guanhumi (Latreille,1825). / Kinetic and molecular characterization of the (Na +, K +) - ATPase of the gill tissue of the Cardisoma guanhumi crab (Latreille, 1825).

Farias, Daniel Lima de 18 September 2017 (has links)
A (Na+,K+)-ATPase é uma proteína integral da membrana plasmática que está sujeita a uma complexa regulação. Na fauna dos manguezais, dentre os crustáceos se destaca o caranguejo Cardisoma guanhumi (Latreille, 1825), um crustáceo decápode que desempenha um papel significativo na dinâmica deste ecossistema, considerado relevante recurso pesqueiro. Este estudo fornece o efeito das poliaminas, das enzimas do estresse oxidativo, da toxidade do amônio, e também investiga atividade K+-fosfatase e atividade (Na+,K+)-ATPase por estimulação sinérgica de K+/ NH4+ e NH4+/K+ na fração microsomal de brânquias do guaiamum. A atividade K+-fosfatase e a atividade (Na+,K+)-ATPase foram determinadas continuamente, a 25°C, em um espectrofotômetro Shimadzu U1800 equipado com células termostatizadas. Todos os experimentos foram feitos em duplicata utilizando-se pelo menos três preparações diferentes (N 3). A atividade PNFFase insensível à ouabaína representa 40% da atividade PNFFase total, e valor do KI foi de 370,0 18,5mol L-1. A atividade específica máxima estimada foi de 29,30 ± 1,46 nmol Pi min-1 mg-1 e o KM = 2,90 ± 0,14 mmol L-1. Por outro lado, a utilização do substrato fisiológico (ATP) permitiu a determinação de parâmetros cinéticos da atividade (Na+,K+)-ATPase em relação aos moduladores ATP, potássio, sódio, magnésio, amônio e, ouabaína. A atividade ATPase total na fração microsomal do tecido branquial de C. guanhumi recém-capturado (16 S) foi aproximadamente 166 nmol Pi min-1 mg-1 e uma atividade ATPase insensível à ouabaína de 26,55 nmol Pi min-1 mg-1, enquanto que aclimatado a 22 S a atividade ATPase total foi de 303,28 ± 15,16 nmol Pi min-1 mg-1 e a atividade insensível à ouabaína de 68,60 ± 3,43 nmol Pi min-1 mg-1. A (Na+,K+)-ATPase presente nessas duas preparações, não apresentam uma estimulação sinergística por K+ e NH4+. Houve alterações na afinidade da enzima para o ATP nas três diferentes concentrações de NH4Cl (120 mg/L; 240 mg/L; 360 mg/L) em comparação com o controle sem NH4Cl (KM= 0,1 ± 0,005 mmol L-1).Não foram observados efeitos significativos utilizando aminas biogênicas. Nossas análises mostraram também que as enzimas do estresse oxidativo estão atuando nestas diferentes preparações para combater os oxirradicais. Análise por Western blotting com anticorpo monoclonal revelou a presença de uma banda correspondente a subunidade da (Na+,K+)-ATPase com massa molecular 110 kDa. A imunolocalização mostrou que a subunidade da (Na+,K+)-ATPase encontra-se predominantemente distribuída por todo o citoplasma das células pilares branquiais, incluindo a região apical abaixo da cutícula. Identificamos o gene constitutivo da sequência parcial de nucleotídeos do cDNA da proteína ribosomal L10 (PRL10) das brânquias deCardisoma guanhumi. O estudo demonstrou que a (Na+,K+)-ATPase constitui um importante regulador da osmorregulação nesta espécie, contribuindo para um melhor entendimento dos papéis exercidos por essa enzima nos processos de osmorregulação e excreção de amônia nos crustáceos. / The (Na+,K+)-ATPase is an integral plasma membrane protein that is subject to complex regulation. In the mangrove fauna, the crustaceans include Cardisoma guanhumi crab (Latreille, 1825), a decapod crustacean that plays a significant role in the dynamics of this ecosystem, considered a relevant fishing resource. This study provides the effect of polyamines, oxidative stress enzymes, ammonium toxicity, and also investigates K+-phosphatase activity and (Na+,K+)-ATPase activity by synergistic K+/NH4+ and NH4+/ K+ stimulation in the microsomal fraction of guaiamum gills. The K+-phosphatase activity and (Na+,K+)-ATPase activity were determined continuously at 25°C on a Shimadzu U1800 spectrophotometer equipped with thermostated cells. All experiments were done in duplicate using at least three different preparations (N 3). The PNFFase activity insensitive to ouabain represents 40% of the total PNFFase activity, and KI value was 370,0 18,5mol L-1. The maximum specific activity estimated was 29.30 ± 1.46 nmol Pi min-1 mg-1 and KM = 2.90 ± 0.14 mmol L-1. On the other hand, the use of the physiological substrate (ATP) allowed the determination of kinetic parameters of the activity (Na+,K+)-ATPase in relation to the modulators ATP, potassium, sodium, magnesium, ammonium and ouabain.The total ATPase activity in the microsomal fraction of freshly caught C. guanhumi (16 S) gill tissue was approximately 166 nmol Pi min-1 mg-1 and a 26.55 nmol Pi min-1 mg-1 ouabain ATPase activity, while acclimated at 22 S the total ATPase activity was 303.28 ± 15.16 nmol Pi min-1 mg-1 and the ouabain insensitive activity of 68.60 ± 3.43 nmol Pi min-1 mg-1. The (Na+,K+)-ATPase present in these two preparations, do not present a synergistic stimulation by K+ and NH4+. There were changes in the enzyme affinity for ATP at the three different concentrations of NH4Cl (120 mg / L, 240 mg / L, 360 mg / L) compared to the control without NH4Cl (KM = 0.1 ± 0.005 mmol L-1). No significant effects were observed using biogenic amines. No significant effects were observed using biogenic amines. Our analyzes have also shown that oxidative stress enzymes are acting in these different preparations to combat oxirradicals. Analysis by Western blotting with monoclonal antibody revealed the presence of a band corresponding to sub subunit of (Na+,K+)-ATPase with molecular mass 110 kDa. Immunolocalization showed that the (Na+,K+)-ATPase sub subunit is predominantly distributed throughout the cytoplasm of the gill pillars, including the apical region below the cuticle. We identified the constitutive gene of the nucleotide partial sequence of the cDNA of ribosomal protein L10 (PRL10) of the gills of Cardisoma guanhumi. The study demonstrated that (Na+,K+)-ATPase is an important regulator of osmoregulation in this species, contributing to a better understanding of the roles played by this enzyme in the processes of osmoregulation and excretion of ammonia in crustaceans.
6

Auto-inhibition mechanism of the guanine nucleotide exchange factor Tiam1

Xu, Zhen 01 August 2016 (has links)
The Rho family of guanosine triphosphatases (GTPases) function as binary molecular switches, which play an important role in the regulation of actin cytoskeleton rearrangement and are involved in several critical cellular processes including cell adhesion, division and migration. Rho GTPases are specifically activated by their associated guanine nucleotide exchange factors (RhoGEFs). Dysregulation of RhoGEFs function through mutation or overexpression has been implicated in oncogenic transformation of cells and linked to several kinds of invasive and metastatic forms of cancer. T-cell lymphoma invasion and metastasis 1 (Tiam1) is a multi-domain Dbl family GEF protein and specifically activates Rho GTPase Rac1 through the catalytic Dbl homology and Pleckstrin homology (DH-PH) bi-domain. Previous works have shown that the nucleotide exchange function of the full-length Tiam1 is auto-inhibited and can be activated by N-terminal truncation, phosphorylation and protein-protein interactions. However, the molecular mechanisms of Tiam1 GEF auto-inhibition and activation have not yet been determined. In this study, the N-terminal PH-CC-Ex domain of Tiam1 is shown to directly inhibit the GEF function of the catalytic DH-PH domain in vitro. Using fluorescencebased kinetics experiments, we demonstrate that the auto-inhibition of Tiam1 GEF function occurs by a competitive inhibition model. In this model, the maximum velocity of catalytic activity remains unchanged, but the Michaelis-Menten constant of the auto-inhibited Tiam1 (the PH-PH fragment) on the substrate Rac1 is increased compared to the activated Tiam1 (the catalytic DH-PH domain alone). Through small angle X-ray scattering (SAXS), the structure of auto-inhibited Tiam1 (the PH-PH fragment) is shown to form a closed conformation in which the catalytic DH-PH domain is blocked by the N-terminal PH-CC-Ex domain. Taken together, these findings demonstrate the molecular mechanism of Tiam1 GEF autoinhibition in which the PH-CC-Ex domain of Tiam1 inhibits its GEF function by preventing the substrate Rho GTPase Rac1 from accessing the catalytic DH-PH bi-domain.
7

Caractérisation biochimique et structurale de la métallo-β-lactamase VIM-4. Sélection de nouveaux inhibiteurs de métallo-β-lactamases.

Lassaux, Patricia 04 June 2010 (has links)
The Pseudomonas aeruginosa VIM-4 metallo-β-lactamase is a member of the subclass B1. It belongs to the VIM-type β-lactamases encoded by genetic mobile element such as class 1 integrons. This particularity enhances the relevance of VIM type enzymes since these enzymes are now disseminated among important nosocomial strains such as Klebsiella pneumoniae and Pseudomonas aeruginosa. In consequence, the study of VIM-4 was performed to determine its kinetic parameters, its 3D structure and the dependence of its activity on Zn2+ concentration. VIM-4 has been described as an efficient enzyme able to hydrolyze all the β-lactam compounds. We observed that VIM-4 activity is dependent on the Zn2+ concentration in the buffer, with a maximal activity obtained at 50 µM. Two different forms of VIM-4 were observed by X-ray crystallography in the presence or absence of Zn2+ in the crystallogenesis buffer. The first form contains two Zn2+ and the second possesses only one Zn2+ in the histidine site. The apoenzyme form was obtained. Its study revealed that this form was poorly stable with a less structured shape. The active form is not restored even in presence of a large Zn2+ excess. In order to determine the Zn2+ stoechiometry in VIM-4, ICPMS (Inductively coupled plasma mass spectrometry) experiments were performed. The results of this study indicated that the mono-zinc form of VIM-4 is favored in absence of Zn2+ ions in the buffer and the di-zinc form appears in the presence of added Zn2+ ions. The dissociation constants of the Zn2+ ions with VIM-4 enzyme were determined using benzylpenicillin. The dissociation constants of the first, the second and the third Zn2+ are respectively KD1 which is clearly below 1 µM, KD2 equal to 8.5 µM and KD3 within a range of 200 to 500 µM. A complementary titration of the free Zn2+ ions from denatured VIM-4 with a chromophore chelating agent seems to confirm this feature as only one Zn2+ could be titrated. Then with no added Zn2+, VIM-4 would be in a mono-zinc form and with a Zn2+ concentration higher than 10 µM, the di-zinc form of VIM-4 would be present. In the last decade, numerous studies have reported an increasing mortality among patients in intensive care due to multiresistant pathogens. These strains are producing at least two different classes of β-lactamases. In the eighties, a strategy of combination of β-lactamase inactivator and β-lactam antibiotics was developed against serine β-lactamases. Some of the members of this family have already developed variants resistant to these inhibitors; however this combination remains efficient. In the case of the MBLs, extensive studies have been performed to find a generic inhibitor. Unfortunately, due to the heterogeneity of this enzyme group, no solution has been found. The development of a metallo-β-lactamase inhibitor, particularly active against acquired MBLs, which are the most relevant enzymes, is thus needed. Our second purpose was the identification of new molecules that could be developed as broad spectrum MBLs inhibitors. We found a new class of compounds, mercaptophosphonates derivatives, which can be used as leads for finding generic MBL inhibitors.
8

Caracterização cinética e molecular da (Na+,K+)-ATPase do tecido branquial do caranguejo Cardisoma guanhumi (Latreille,1825). / Kinetic and molecular characterization of the (Na +, K +) - ATPase of the gill tissue of the Cardisoma guanhumi crab (Latreille, 1825).

Daniel Lima de Farias 18 September 2017 (has links)
A (Na+,K+)-ATPase é uma proteína integral da membrana plasmática que está sujeita a uma complexa regulação. Na fauna dos manguezais, dentre os crustáceos se destaca o caranguejo Cardisoma guanhumi (Latreille, 1825), um crustáceo decápode que desempenha um papel significativo na dinâmica deste ecossistema, considerado relevante recurso pesqueiro. Este estudo fornece o efeito das poliaminas, das enzimas do estresse oxidativo, da toxidade do amônio, e também investiga atividade K+-fosfatase e atividade (Na+,K+)-ATPase por estimulação sinérgica de K+/ NH4+ e NH4+/K+ na fração microsomal de brânquias do guaiamum. A atividade K+-fosfatase e a atividade (Na+,K+)-ATPase foram determinadas continuamente, a 25°C, em um espectrofotômetro Shimadzu U1800 equipado com células termostatizadas. Todos os experimentos foram feitos em duplicata utilizando-se pelo menos três preparações diferentes (N 3). A atividade PNFFase insensível à ouabaína representa 40% da atividade PNFFase total, e valor do KI foi de 370,0 18,5mol L-1. A atividade específica máxima estimada foi de 29,30 ± 1,46 nmol Pi min-1 mg-1 e o KM = 2,90 ± 0,14 mmol L-1. Por outro lado, a utilização do substrato fisiológico (ATP) permitiu a determinação de parâmetros cinéticos da atividade (Na+,K+)-ATPase em relação aos moduladores ATP, potássio, sódio, magnésio, amônio e, ouabaína. A atividade ATPase total na fração microsomal do tecido branquial de C. guanhumi recém-capturado (16 S) foi aproximadamente 166 nmol Pi min-1 mg-1 e uma atividade ATPase insensível à ouabaína de 26,55 nmol Pi min-1 mg-1, enquanto que aclimatado a 22 S a atividade ATPase total foi de 303,28 ± 15,16 nmol Pi min-1 mg-1 e a atividade insensível à ouabaína de 68,60 ± 3,43 nmol Pi min-1 mg-1. A (Na+,K+)-ATPase presente nessas duas preparações, não apresentam uma estimulação sinergística por K+ e NH4+. Houve alterações na afinidade da enzima para o ATP nas três diferentes concentrações de NH4Cl (120 mg/L; 240 mg/L; 360 mg/L) em comparação com o controle sem NH4Cl (KM= 0,1 ± 0,005 mmol L-1).Não foram observados efeitos significativos utilizando aminas biogênicas. Nossas análises mostraram também que as enzimas do estresse oxidativo estão atuando nestas diferentes preparações para combater os oxirradicais. Análise por Western blotting com anticorpo monoclonal revelou a presença de uma banda correspondente a subunidade da (Na+,K+)-ATPase com massa molecular 110 kDa. A imunolocalização mostrou que a subunidade da (Na+,K+)-ATPase encontra-se predominantemente distribuída por todo o citoplasma das células pilares branquiais, incluindo a região apical abaixo da cutícula. Identificamos o gene constitutivo da sequência parcial de nucleotídeos do cDNA da proteína ribosomal L10 (PRL10) das brânquias deCardisoma guanhumi. O estudo demonstrou que a (Na+,K+)-ATPase constitui um importante regulador da osmorregulação nesta espécie, contribuindo para um melhor entendimento dos papéis exercidos por essa enzima nos processos de osmorregulação e excreção de amônia nos crustáceos. / The (Na+,K+)-ATPase is an integral plasma membrane protein that is subject to complex regulation. In the mangrove fauna, the crustaceans include Cardisoma guanhumi crab (Latreille, 1825), a decapod crustacean that plays a significant role in the dynamics of this ecosystem, considered a relevant fishing resource. This study provides the effect of polyamines, oxidative stress enzymes, ammonium toxicity, and also investigates K+-phosphatase activity and (Na+,K+)-ATPase activity by synergistic K+/NH4+ and NH4+/ K+ stimulation in the microsomal fraction of guaiamum gills. The K+-phosphatase activity and (Na+,K+)-ATPase activity were determined continuously at 25°C on a Shimadzu U1800 spectrophotometer equipped with thermostated cells. All experiments were done in duplicate using at least three different preparations (N 3). The PNFFase activity insensitive to ouabain represents 40% of the total PNFFase activity, and KI value was 370,0 18,5mol L-1. The maximum specific activity estimated was 29.30 ± 1.46 nmol Pi min-1 mg-1 and KM = 2.90 ± 0.14 mmol L-1. On the other hand, the use of the physiological substrate (ATP) allowed the determination of kinetic parameters of the activity (Na+,K+)-ATPase in relation to the modulators ATP, potassium, sodium, magnesium, ammonium and ouabain.The total ATPase activity in the microsomal fraction of freshly caught C. guanhumi (16 S) gill tissue was approximately 166 nmol Pi min-1 mg-1 and a 26.55 nmol Pi min-1 mg-1 ouabain ATPase activity, while acclimated at 22 S the total ATPase activity was 303.28 ± 15.16 nmol Pi min-1 mg-1 and the ouabain insensitive activity of 68.60 ± 3.43 nmol Pi min-1 mg-1. The (Na+,K+)-ATPase present in these two preparations, do not present a synergistic stimulation by K+ and NH4+. There were changes in the enzyme affinity for ATP at the three different concentrations of NH4Cl (120 mg / L, 240 mg / L, 360 mg / L) compared to the control without NH4Cl (KM = 0.1 ± 0.005 mmol L-1). No significant effects were observed using biogenic amines. No significant effects were observed using biogenic amines. Our analyzes have also shown that oxidative stress enzymes are acting in these different preparations to combat oxirradicals. Analysis by Western blotting with monoclonal antibody revealed the presence of a band corresponding to sub subunit of (Na+,K+)-ATPase with molecular mass 110 kDa. Immunolocalization showed that the (Na+,K+)-ATPase sub subunit is predominantly distributed throughout the cytoplasm of the gill pillars, including the apical region below the cuticle. We identified the constitutive gene of the nucleotide partial sequence of the cDNA of ribosomal protein L10 (PRL10) of the gills of Cardisoma guanhumi. The study demonstrated that (Na+,K+)-ATPase is an important regulator of osmoregulation in this species, contributing to a better understanding of the roles played by this enzyme in the processes of osmoregulation and excretion of ammonia in crustaceans.
9

Influence of lipid membrane environment on the kinetics of the cytochrome P450 reductase- cytochrome P450 3A4 enzyme system in nanodiscs

Liu, Kang-Cheng January 2017 (has links)
The cytochrome P450 enzyme system is a multicomponent electron-transfer chain composed of a haem-containing monooxygenase cytochrome P450 (CYP) and one or more redox partners. Eukaryotic CYPs and their redox partner NADPH-dependent cytochrome P450 oxidoreductase (CPR) are involved in many biological processes. Each protein has one N- terminal membrane anchor domain for location within the endoplasmic reticulum (ER). In mammals, CYPs and CPR are especially abundant in liver cells, where they play important roles in the metabolism of steroids, fatty acids, and xenobiotic compounds including numerous drugs of pharmaceutical importance. Incorporation into lipid membranes is an important aspect of CYP and CPR function, influencing their kinetic properties and interactions. In this thesis, soluble nanometer-scale phospholipid bilayer membrane discs, "nanodiscs", were used as a reconstitution system to study the influence of lipid membrane composition on the activities of the abundant human CYP3A4 and human CPR. Both enzymes were expressed and purified from bacteria, and assembled into functionally active membrane-bound complexes in nanodiscs. Nanodisc assembly was assessed by a combination of native and denaturing gel electrophoresis, and a fluorimetric assay was developed to study CYP3A4 reaction kinetics using 7-benzyloxyquinoline as substrate. Kinetic properties were investigated with respect to different lipid membrane compositions: phosphatidyl choline; a synthetic lipid mixture resembling the ER; and natural lipids extracted from liver microsomes. Full activity of the CYP3A4 system, with electron transfer from NADPH via CPR, could only be reconstituted when both CYP3A4 and CPR were membrane-bound within the same nanodiscs. No activity was observed when CPR and CYP3A4 were each incorporated seperately into naodiscs then mixed together, or when soluble forms of CPR were mixed with pre-assembled CYP3A4-nanodiscs. Thus, assembly of the two proteins within the same membrane was shown to be essential for the function of the CPR-CYP3A4 electron transfer system. Comparison of the reaction kinetics in different membrane compositions revealed liver microsomal lipid to have an enhancing effect both on the activity of the assembled CPR-CYP3A4 nanodisc complex, and on the activity of CPR alone incorporated in nanodiscs, when compared either to the synthetic lipid mixture or to phosphatidyl choline alone. Thus, natural lipids appear to possess properties or include components important for the catalytic function of the CYP system, which are absent from synthetic lipid. Input of electrons, measured by NADPH consumption, exceeded product formation rate by the CPR-CYP3A4 complex in nanodiscs, indicating "leakage" in the electron flow, possibly due to uncoupling of the two enzymes. Uncoupling was shown to occur by developing a novel fluorimetric method using the dye MitSOX to detect superoxide production. The significance of this, and to what extent control of coupling could be a natural means of regulation of the CPR-CYP system, remains to be determined. Thus, phospholipid bilayer nanodiscs prove a powerful tool to enable detailed analysis of the reaction kinetics of membrane-reconstituted CPR-CYP systems, and to allow pertinent questions to be addressed concerning the integral significance of the membrane environment.
10

Production et hydrolyse des amides : mécanismes chimiques, isotopie et applications : étude de la glutamine synthétase / Production and hydrolysis of amide : chemical mechanisms, isotopy and applications : study of glutamine synthetase

Mauve, Caroline 15 December 2014 (has links)
La nutrition azotée des bactéries et des plantes est actuellement un sujet de grande importance, notamment pour comprendre comment améliorer les voies métaboliques aboutissant à l’assimilation de l’azote et à plus grande échelle, optimiser des apports d’engrais et augmenter le rendement des cultures. Dans ce contexte, la réaction d’amidation catalysée par la glutamine synthétase (GS), qui fixe l’ammonium (NH₄)⁺ en glutamine, est cruciale car elle est à la fois le point d’entrée de l’azote dans les végétaux, et une étape-clef du recyclage de l’azote (en particulier, NH₄⁺ photorespiratoire). Dans cette étude, nous nous sommes intéressés à la cinétique enzymatique et au mécanisme chimique de la GS. Des systèmes analytiques (HPLC, RMN , GC-MS) ont  été optimisés pour permettre la mesure de l’activité enzymatique in vitro et pour réaliser des analyses par spectrométrie de masse à ratio isotopique. Avec ces techniques, nous avons pu regarder précisément les effets isotopiques ¹²C/¹³C, ¹⁴N/¹⁵N et H₂O/D₂O (solvant) lors de la catalyse, en utilisant la GS d’E. coli et d’Arabidopsis thaliana (GS1,2). Nos résultats montrent qu’il n’y a pas d’effet isotopique ¹²C/¹³C, mais qu’il y a un fractionnement ¹⁴N/¹⁵N de »16‰. En outre, il y a un effet inverse du solvant (réaction 1.5 à 2 fois plus rapide dans D₂O).  Cela suggère que la création de la liaison C----N (amidation) est partiellement limitante (engagement catalytique de »14% seulement) et que le réseau de ponts hydrogènes dans le site actif est crucial pour déterminer la vitesse de la réaction. L’apparition d’effets ¹⁴N/¹⁵N inverses dans certaines circonstances et les effets drastiques causés par une substitution du cofacteur métallique (Mg²⁺) suggèrent en outre que l’étape d’amidation peut être réversible et que la coordination par un métal joue un rôle très important pour stabiliser les intermédiaires de la réaction, en interaction avec le solvant. Ainsi, dans son solvant naturel qu’est H₂O, la GS réalise une réaction ‘chimiquement difficile’ (barrière énergétique élevée de l’amidation) rendue possible par le clivage de l’ATP et son caractère exergonique. / Nitrogen nutrition in bacteria and plants is currently an important topic, in particular to identify key points for metabolic improvements in N assimilation and more generally, to optimize fertilization and crop yield. In such a context, the amidation reaction catalyzed by glutamine synthetase (GS), which fixes ammonium (NH₄)⁺ into glutamine, is of crucial importance since it both represents the N entry in plants and the main step of N recycling (such as photorespiratory (NH₄)⁺. Here, we examined GS kinetics and chemical mechanism. Analytical methods (HPLC, NMR, GC-MS) have been set up so as to measure in vitro activities and isotopic abundance by isotope ratio mass spectrometry. These gave access to isotope effects (¹²C/¹³C, ¹⁴N/¹⁵N et H₂O/D₂O – solvent) during catalysis, with the GS from either E. coli or A. thaliana (GS1,2). Our results show that there no ¹²C/¹³C isotope effect but there is significant ¹⁴N/¹⁵N isotope fractionation of ca. 16‰. In addition, there is an inverse solvent isotope effect (reaction 1.5 to 2 times faster in D₂O). This suggests that forming the C----N bond (amidation) is partially rate-limiting (catalytic commitment of ca. 14% only) and the H-bond network in the active site is of substantial importance for the reaction rate. The occurrence of inverse ¹⁴N/¹⁵N isotope effects under certain circumstances as well as the drastic impact of changing the metal cofactor (Mg²⁺)) indicate that the amidation step can be reversible and that the coordination by the metal plays a key role in stabilizing reaction intermediates, by interfacing the solvent. In other words, in its natural solvent H₂O, the GS catalyses an intrinsically ‘difficult’ reaction (high energy barrier of amidation) made possible by both ATP cleavage and its exergonic nature.

Page generated in 0.0886 seconds