• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèse et caractérisation de matériaux à base de SnTe pour la conversion d’énergie par effets thermoélectriques / Synthesis and characterization of SnTe-based materials for energy conversion by thermoelectric effects

Ibrahim, Dorra 27 September 2018 (has links)
Les alliages de tellurure de plomb (PbTe) sont reconnus depuis longtemps comme d’excellents matériaux thermoélectriques avec un ZT de l’ordre de 1,0 pour des applications en génération d’électricité à hautes températures où le tellurure de bismuth (Bi2Te3) ne peut plus être utilisé. Cependant, la présence de plomb rend problématique une commercialisation à grande échelle de dispositifs thermoélectriques contenant ce composé. Le tellurure d’étain (SnTe), étudié il y a plus de 40 ans comme un analogue à PbTe, présente des performances thermoélectriques médiocres du fait de la présence d’une concentration élevée en lacunes de Sn. Toutefois, la dernière décennie a vu une recrudescence importante des recherches sur ce composé visant à améliorer ses performances thermoélectriques à hautes températures. Le composé SnTe présente des déviations par rapport à la stœchiométrie idéale (lacunes d’étain) quelles que soient la méthode de synthèse utilisée. Dans ce travail, nous dévoilons l’influence de la déviation par rapport à la stœchiométrie idéale (composition chimique) et des conditions de synthèse (avec trempe, sans trempe, recuit de saturation et melt-spinning) sur les propriétés de transport électrique et thermique de ces matériaux. Pour ce faire, des techniques de synthèse par métallurgie de poudres ont été mises en œuvre. Les matériaux résultants ont été ensuite caractérisés finement aussi bien d’un point de vue structural que physico-chimique. Ainsi, une étude détaillée de leur structure cristalline a été menée en combinant des mesures de diffraction des rayons X sur poudre et des analyses de microscopie électronique à balayage et à transmission à haute résolution. Des mesures de propriétés électriques et thermiques ont été menés à basses températures (5 – 300 K) pour identifier les mécanismes microscopiques qui gouvernent le transport et à hautes températures (300 – 800 K) afin de déterminer le domaine d’application optimal. Ces mesures ont confirmé le potentiel de ces composés pour des applications en génération d’électricité à températures moyennes. De nombreuses possibilités de substitutions sur le site de l’étain ou/et du tellure ont été entreprises afin de tenter d’optimiser davantage les performances thermoélectriques de ces composés. Des éléments en substitution ont été choisi pour augmenter le pouvoir thermoélectrique à travers la diminution de la concentration en trous ou par ingénierie de la structure de bande et/ou diminuer la conductivité thermique de réseau via la formation de solutions solides ou de précipités dans la matrice. Le choix de ces éléments a notamment été guidé par des calculs de structure de bande électronique. Les résultats expérimentaux ont été modélisé par un modèle à deux bandes non dégénérées afin de dévoiler les principaux facteurs qui gouvernent le transport. La conductivité thermique de réseau a été analysée en utilisant le modèle de Callaway afin d’étudier les mécanismes de diffusion des phonons à basses températures et de mieux appréhender l’influence des lacunes sur le transport thermique / Lead telluride (PbTe) alloys are among the most efficient thermoelectric materials with a ZT of 1.0 for electricity generation applications in the mid to high temperature region where bismuth telluride (Bi2Te3) can no longer be used. Despite their excellent environmental stability, the perceived toxicity of lead chalcogenides can frustrate its development and large-scale application. Tin telluride (SnTe), studied more than 40 years ago as a analogue of PbTe shows poor thermoelectric performances because of its lower Seebeck coefficient. The latter is due to heavy intrinsic doping arising from spontaneous Sn vacancies. However, recent studies unambiguously show that SnTe has a strong potential of being a promising thermoelectric at high temperatures. In fact, regardless of the synthesis method used, SnTe compound is in deviation from the ideal stoichiometry (Sn vacancies). In this work, we unveil the influence of this deviation (chemical composition) and of the synthesis conditions (with quenching, without quenching, annealing and melt-spinning) on the electrical and thermal transport properties of these materials. Hence, for the synthesis of these materials different powder metallurgy techniques were implemented. The resulting materials were then finely characterized by structural and physico-chemical point of view. Thus, a detailed study of their crystalline structure was carried on by combining X-ray powder diffraction, scanning and transmission electron microscopy analyzes. The electrical and thermal properties measurements were effectuated at low temperatures (5 - 300 K) to identify the microscopic mechanisms that govern transport and at high temperatures (300 - 800 K) to determine the optimal domain of application. These measurements have confirmed the strong potential of these compounds for electricity generation applications at high temperatures. Numerous substitution possibilities at the tin and / or tellurium site have been undertaken in an attempt to further optimize the thermoelectric performance of these compounds. Substitute elements were chosen to increase the thermoelectric power through the decrease in the hole concentration or by engineering the band structure and / or decrease the lattice thermal conductivity via the formation of solid solutions or precipitates in the matrix. The choice of these elements was guided by electronic band structure calculations (DOS). The experimental results were modeled by a non-degenerate two-band model to reveal the main factors that govern the electronic transport. The lattice thermal conductivity was analyzed using the Callaway model to study the phonon scattering mechanisms at low temperatures and to better understand the influence of Sn vacancies on the thermal transport
2

Topological properties of SnTe and Fe3Sn2

O'Neill, Christopher David January 2016 (has links)
The aim of this thesis was to identify topologically protected states in the materials SnTe and Fe3Sn2. Such states are currently receiving a large amount of interest due to their applications for spintronic devices. Recently SnTe was discovered to be a crystalline topological insulator, a state of matter where its surface is highly conducting while the bulk remains insulating. However detection of these surface states is difficult using transport measurements, since the bulk is not totally insulating but still contains a large number of free carriers. SnTe undergoes a rhombohedral structural distortion on cooling caused by a soft transverse optic phonon, with the exact Tc strongly dependent on the carrier concentration. The distortion acts to lower crystal symmetry removing some of the symmetries that protect the surface state. Single crystal samples displaying the structural transition were grown and investigated using inelastic X-ray scattering to measure the phonon softening previously reported by other authors. The soft phonon was seen to recover again after distortion indicative of a 2nd order ferroelectric transition. This is the first reported discovery of the recovery showing the distortion is ferroelectric in nature. Shubnikov de Haas quantum oscillations were measured to study the Fermi surface under ambient and high hydrostatic pressure conditions. A distortion of the Fermi surface caused by the structural transition was evident, resulting in 4 distinct oscillation frequencies. However at applied pressures above 6 kbar, the transition was suppressed and only 1 oscillation measured. A two component Hall response also becomes apparent under high pressure. The possible origin of this and its relation to possible surface states is discussed. The anomalous Hall effect was also measured in the ferromagnet Fe3Sn2 which has a bilayer Kagome structure. Previous measurements on polycrystalline Fe3Sn2 suggested a non-collinear spin rotation from the spins pointing along the c-axis at high temperature to lying in the a-b plane below 80 K. A spin glass phase is then expected below 80 K. Single crystal magnetisation measurements carried out in this thesis show the spins are in the a-b plane at high temperatures and begin to display a ferromagnetic component along the c-axis approaching 80 K. The difference is accounted for by considering the demagnetising factor in the plate shaped single crystals. For this temperature range an applied field along the c-direction however rotates the moments towards c. At intermediate fields there are strong features evident in both the anomalous Hall effect and magnetoresistance. These features may be due to a topological Hall effect caused by a non-collinear spin structure. The possible existence of Skyrmion excitations was also recently discussed theoretically in Fe3Sn2. Our data is more suggestive of static Skyrmions known to cause topological Hall effects in MnSi.

Page generated in 0.0202 seconds