• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 423
  • 62
  • 46
  • 40
  • 38
  • 28
  • 28
  • 28
  • 28
  • 28
  • 28
  • 19
  • 17
  • 7
  • 3
  • Tagged with
  • 844
  • 119
  • 81
  • 72
  • 66
  • 64
  • 63
  • 59
  • 59
  • 58
  • 55
  • 53
  • 52
  • 51
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Energeticky založený model akumulace a tání sněhu v jehličnatém lese a na otevřené ploše / An energy-based model accounting for snow accumulation and snowmelt in a coniferous forest and in an open area

Matějka, Ondřej January 2015 (has links)
An energy-based model accounting for snow accumulation and snowmelt in a coniferous forest and in an open area An energy balance approach was used to simulate snow water equivalent (SWE) evolution in an open area, forest clearing and coniferous forest during winter seasons 2011/12 and 2012/13 in the Bystřice River basin (Krušné Mountains). The aim was to describe the impact of vegetation on snow accumulation and snowmelt under different forest canopy structure and density of trees. Hemispherical photographs were used to describe the forest canopy structure. Energy balance model of snow accumulation and melt was set up. For forest sites the snow model was altered for accounting the effects of the forest canopy on the driving meteorological variables of the snow model. Leaf area index derived from 32 hemispherical photographs of the vegetation and sky was used for forest influence implementation in the snow model. The model was evaluated using snow depth and SWE field data measured at 16 localities in winter seasons from 2011 to 2013. The model was able to reproduce the SWE evolution in both winter seasons beneath the forest canopy, forest clearing and open area with correlations to observations ranging from 0.16 to 0.99. The SWE maximum in forest sites is by 18% lower than in open areas and forest...
442

Variabilita výšky sněhu v lokálním měřítku: Hodnocení vlivu topografie a vegetace / Snow depth variability at the plot scale: Assesment of topography and vegetation influence

Murdychová, Pavlína January 2015 (has links)
Snow depth variability at the plot scale: Assesment of topography and vegetation influence Abstract This master thesis deals with the evaluation of snow depth variability at the plot scale. It focuses on influence of topography and vegetation factors as slope, exposure, curvature, solar radiation and leaf area index. There is also assesment the impact of the size scale. Measurement was carried out in period of accumulation and snowmelt in winter 2014/2015 in the Krkonoše Mountains on Hanapetrova glade. To evaluate the effect of selected factors on variability of snow depth there was used multiple linear regresion and other descriptive statistical methods. The research shows that the variability of snow depth during the accumulation is greater in forest which is probably due to vegetation. The dependency was not confirmed by regression analysis. Higher variability of snow cover in the forest was also observed in the melting period. The variability of snow cover increased in the forest in general. The results show that the snow depth variability decreasses with increasing grid size. Keywords: snow accumulation, snowmelt, topography, vegetation, multivariate analysis
443

Effects of Air Temperature and Lake Ice on Snowfall on the South Shore of Lake Superior

Maki, Angela Pelkie 15 May 2009 (has links)
Lake Superior is a forcing factor for local weather systems, causing substantial amounts of lake effect snow in the winter (particularly on the south shore). This study assesses decreasing ice cover of Lake Superior and its effects upon synoptic weather factors. Data were collected from eleven National Weather Service (NWS) stations located on the south shore of the lake. Rainfall and snowfall amounts from December to May were regressed on percent ice coverage and average monthly temperatures from 1972-2002. Ice coverage and average monthly temperature had a negative relationship with snowfall and rainfall.
444

Wind driven snow accumulation variability and terrain : Establishing a relationship by using GPR on Svalbard. / Den vinddrivna snöackumuleringens variabilitet och terräng : Fastställande av sambandet med hjälp av markpenetrerande radar på Svalbard

Heerema, Catharina January 2016 (has links)
Snow accumulation patterns can be highly variable depending on terrain and wind. Knowledge of spatial variability of snow accumulation is of high relevance for mass balance modelling. By not incorporating the variability in snow cover, the estimation in mass fluxes and the surface melt are incorrectly presented, affecting the eventual estimation of for instance contribution to sea level rise. Additionally, knowledge of snow accumulation variability is essential for assessing the reliability of point-wise mass balance measurements. Using ground penetrating radar (GPR), the spatial variability of snow can be mapped with both a great spatial and temporal resolution. GPR enables tracing of summer surface melt layers, resulting in a 2D reconstruction of past snow accumulation and associated variability. GPR measurements have been done on Svalbard, during 2012, 2013 and 2014. Based on the selected 2009 summer surface in the GPR measurements, accumulation rates were estimated between 2009-2012; 2009-2013 and 2009-2014. In addition, several terrain parameters are computed by combining DEM calculations with wind direction, resulting in a sheltering index, slope and curvature. We explore relationships between the found accumulation pattern and the terrain parameters with varying wind directions. Correlations between terrain and accumulation depend on the selected wind angle, which appears to change with elevation. The results suggest that localized wind patterns prevail on the glacier and shape the snow cover. Katabatic winds form at low elevations on the glacier and are oriented in the glacier direction of approximately 20 degrees. At intermediate elevation, winds from the east-southeast regulate the accumulation pattern. On the upper parts of the glacier, the terrain is more exposed and winds from large-scale atmospheric circulation, at 240 degrees, become more important in formation of the snow accumulation pattern. Correlations are overall high, indicating a strong influence of terrain features on the accumulation distribution. No distinction can be made between the different terrain parameters and accumulation, all returning similar correlations with accumulation except for curvature, which overall returns slightly lower correlations. In addition, the results found great spatial variability in snow accumulation, underlining the importance of incorporating snow accumulation variability in glacier mass balance models. / Snow accumulation patterns can be highly variable depending on terrain and wind. Knowledge of spatialvariability of snow accumulation is of high relevance for mass balance modelling. By not incorporating the variability in snow cover, the estimation in mass fluxes and the surface melt are incorrectlypresented, affecting the eventual estimation of for instance contribution to sea level rise. Additionally,knowledge of snow accumulation variability is essential for assessing the reliability of point-wise mass balance measurements.Using ground penetrating radar (GPR), the spatial variability of snow can be mapped with both agreat spatial and temporal resolution. GPR enables tracing of summer surface melt layers, resulting in a 2D reconstruction of past snow accumulation and associated variability. GPR measurements have been done on Svalbard, during 2012, 2013 and 2014. Based on the selected 2009 summer surface in the GPR measurements, accumulation rates were estimated between 2009-2012; 2009-2013 and 2009-2014. In addition, several terrain parameters are computed by combining DEM calculations with wind direction, resulting in a sheltering index, slope and curvature. We explore relationships between the found accumulation pattern and the terrain parameters with varying wind directions.Correlations between terrain and accumulation depend on the selected wind angle, which appears to change with elevation. The results suggest that localized wind patterns prevail on the glacier and shape the snow cover. Katabatic winds form at low elevations on the glacier and are oriented in the glacier direction of approximately 20 degrees. At intermediate elevation, winds from the east-southeast regulate the accumulation pattern. On the upper parts of the glacier, the terrain is more exposed and winds from large-scale atmospheric circulation, at 240 degrees, become more important in formation of the snow accumulation pattern. Correlations are overall high, indicating a strong influence of terrain features on the accumulation distribution. No distinction can be made between the different terrain parameters and accumulation, all returning similar correlations with accumulation except for curvature, which overall returns slightly lower correlations. In addition, the results found great spatial variability in snowaccumulation, underlinin
445

Snow cover analysis for the High Drakensberg through remote sensing: Environmental implications

Mulder, Nicholas Andrew Maurits 22 May 2008 (has links)
Snow occurs in the High Drakensberg of southern Africa approximately eight times per annum. Snow cover is frequently captured by Landsat satellite imagery, which provide data for the monitoring of snow cover in other regions of the world. Together with a digital elevation model, repetitive snow cover data are used to analyse the distribution of snow cover in the High Drakensberg study area. The effect that the regional and local topography, latitude, and climatic conditions have on the spatial distribution of snow and the function that temperature, wind, altitude, aspect and slope gradient play in the preservation of snow cover are examined. The results of the spatial study allow for the identification of sites that support the accumulation of snow. Specific active and relict geomorphological features were surveyed and correlated spatially to the contemporary snow cover. Among such features are linear debris ridges on south-facing valley slopes in the High Drakensberg. These appeared similar to glacial features found elsewhere in the world and are thus significant in a long-standing and highly conjectured debate over the validity of possible plateau, cirque and niche glaciation in the region. Late-lying snow cover favours gently sloping south- and southeast-facing aspects at altitudes from 3000 m ASL to just below the highest peaks in the region near 3450 m ASL, above which higher insolation levels on the flat mountain summits provides unfavourable conditions. Snow cover immediately adjacent to the Drakensberg escarpment ablates quickly whilst snow cover at high altitudes in the Lesotho interior experiences better preservation conditions. Latitude has no obvious impact on the distribution of snow cover due to the dominant role of topography in the High Drakensberg other than a limiting of snowfall to regions south of 29°S in late spring. Various synoptic conditions produce snowfall in the region, with cold fronts associated with midlatitude cyclones producing the majority of snow cover. A strong correlation exists between the spatial distribution of snow cover and specific geomorphological features. Observed linear debris ridges are located on slopes that experience frequent contemporary snow cover, lending credence for a glacial origin of the ridges during a period of colder environmental conditions.
446

Dopady změn klimatu na sněhové zásoby a odtok v jarním období v pramenné oblasti Vydry / Climate change impacts on snow storages and spring runoff in the Vydra river basin

Cuřín, Vojtěch January 2018 (has links)
Climate change impacts on snow storages and spring runoff in the Vydra river basin Abstract As a result of increasing air temperature, the fraction of precipitation falling as snow decreases. This affects snow cover indicators including snow cover duration, snow cover extent and the amount of water that accumulates in snow cover during winter. These changes further propagate through local runoff process and alter winter and spring runoff. The impacts of air temperature warming of 1℃, 2℃ and 3℃ on the above-mentioned indicators were simulated using a conceptual catchment runoff model HBV-light. Multi- criteria calibration, based on functions describing the goodness of fit of simulated runoff and snow water equivalent (SWE) values was performed. The temperature change scenarios were derived using the delta-change method from reference dataset 1980-2014. The indicator changes were evaluated for 5 elevation belts of the catchment as well as for the catchment as a whole, so that the observed alternations of snow cover indicators could be related to the modelled alternations of runoff. The changes in snow cover characteristics based on these simulations include a decrease of snowfall fraction, shortened snow season, decrease in average and maximal SWE values, and the shift of the average day of year of SWEmax to...
447

L'écosystème neige, structure et fonctionnement des communautés microbiennes du manteau neigeux en Arctique / Snow ecosystem, microbial community structure and function in artic snowpacks

Maccario, Lorrie 18 September 2015 (has links)
La couverture neigeuse arctique peut atteindre jusqu'à un tiers de la surface terrestre. Cet environnement, chimiquement très dynamique, est en interaction avec tous les compartiments environnementaux : l’atmosphère, le sol, les aquifères, et ce influence la biosphère toute entière. Durant les dernières décennies, la neige a été reconnue comme étant un réservoir de microorganismes. Pourtant l’écologie des microbes du manteau neigeux reste mal comprise. L’objectif principal de cette thèse est donc de caractériser le manteau neigeux en tant qu’écosystème fonctionnel, par définition une communauté d’organismes vivants, en conjonction avec la composante non vivante de leur environnement et agissant comme un système. Pour cela, la composition taxonomique et fonctionnelle des communautés microbiennes a été analysée via la technologie de séquençage haut débit pour deux types de modèles de manteau neigeux : une neige saisonnière d’eau douce d’un manteau neigeux terrestre (Ny--‐Alesund, Svalbard) et une couverture neigeuse saline sur la glace de mer (Nuuk, Greenland). Le premier objectif est de caractériser l’hétérogénéité des communautés microbiennes en relation avec les fluctuations conditions environnementales. La composition des communautés microbiennes du manteau neigeux est très variable en fonction de l’avancement dans la saison du printemps vers l’été et en fonction de la profondeur. La corrélation entre les fonctions microbiennes et les conditions environnementales soutient l’hypothèse que les communautés microbiennes interagissent avec les fluctuations des conditions en abiotiques de leur habitat. Le second objectif concerne la spécificité des communautés microbiennes du manteau neigeux ; si le manteau neigeux est un écosystème fonctionnel alors les communautés microbiennes le composant devraient présenter des caractéristiques spécifiques liées à leur adaptation aux conditions de cet habitat, malgré la variabilité. La comparaison de la distribution fonctionnelle entre la neige et des environnements distants (polaires ou non) ainsi que des environnements en interaction proche permet de confirmer une spécificité des communautés microbiennes de la neige. Le troisième objectif se concentre sur la sélection environnementale ; étant donné que l’existence d’une communauté microbienne spécifique implique que des processus de sélection se réalisent au sein du manteau neigeux. La comparaison de la distribution de la structure (quels microorganismes sont présents) et la fonction (que sont-ils capables de faire ?) des communautés microbiennes en fonction de la source des microorganismes au sein d’un manteau neigeux couvrant la glace de mer révèle que la communauté est largement influencée mais diffère de leur source en réponse aux conditions environnementales spécifiques. Les résultats préliminaires des analyses metagénomiques et metatranscriptomiques ont révélé qu’il existe une grande variabilité entre les communautés présentes et potentiellement actives au sein du manteau neigeux. Bien que des limitations conceptuelles et techniques persistent, les méthodes de séquençages haut-débit basées sur les molécules d’ARN sont des outils prometteurs pour décrire les réponses à court terme des communautés microbiennes du manteau neigeux aux variations des conditions environnementales. Finalement, une approche mécanistique préliminaire basée sur la mise en place de microcosmes de neige artificielle et des microorganismes modèles a été développée afin de déterminer les processus de colonisation au sein du manteau neigeux. Alors que de nombreuses questions demeurent concernant l’activité microbienne et les interactions complexes de communautés, les études menées durant cette thèse ont permis de soutenir l’hypothèse que la neige est un écosystème fonctionnel. / The Arctic seasonal snowpack can extend at times over a third of the Earth’s land surface. This chemically dynamic environment interacts with different environmental compartments such as the atmosphere, soil and meltwater, and thus, strongly influences the entire biosphere. During the last decades, snow has been recognized as a microbial reservoir. The ecology of snow microorganisms however remains poorly understood. The main goal of this thesis was to investigate the snow as a functional ecosystem; i.e. a community of living organisms in conjunction with the non--‐living component of their environment and interacting as a system. In order to do so, microbial community taxonomic and functional composition of snow samples from two arctic snowpack models: seasonal snow from terrestrial fresh water snowpack (Ny--‐Alesund, Svalbard) and sea ice snow cover (Nuuk, Greenland) was analyzed using high throughput sequencing technologies. The first objective addressed microbial community heterogeneity in relation with fluctuating environmental conditions. Snow microbial community composition was highly variable during spring season and depth. The relationship between microbial functions and environmental conditions supports the hypothesis that the snow microbial community interacts with the abiotic variability characteristic of their habitat. The second objective addressed snow community specificity; if the snowpack is a functional ecosystem, then the microbial communities inhabiting it should have specific features related to their adaptation to the conditions of this environment, despite variability. The comparison of functional distribution between snow and both remote (polar and non polar) and closely interacting environments provided evidence of snowpack microbial community specificity. The third objective focused on environmental selection, given that the existence of a specific snow microbial community implies that one or more selective processes occur in the snowpack. Comparing the distribution of microbial community structure and function as related to the source of the microorganisms in a sea ice snow cover revealed that snow microbial communities were largely influenced by, yet differed from their seeding sources in response to specific environmental conditions. Mechanistic approaches with model microorganisms in snow microcosms were developed during this thesis and, based on preliminary results, will help to determine colonization processes within snowpack. Finally, preliminary results in the first section of Chapter 4 also showed that a high variability exists between the microorganisms present within the snowpack, and those that are active. Although technical and conceptual issues remain, RNA based high throughput sequencing was evaluated as an encouraging tool to evaluate short--‐term responses of microbial communities to environmental fluctuations. While numerous questions remain about microbial activity and complex community interactions, the results from this thesis support the hypothesis that snow is a functional ecosystem.
448

Lisa See's Snow Flower and the Secret Fan, the Lao Tong relationship from a feminist perspective

Pang, Tian Yang January 2018 (has links)
University of Macau / Faculty of Arts and Humanities. / Department of English
449

Analysis of passive radiometric satellite observations of snow and ice

Rotman, Stanley Richard January 1979 (has links)
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Stanley Richard Rotman. / B.S.
450

Variações de área das geleiras da Colômbia e da Venezuela entre 1985 e 2015, com dados de sensoriamento remoto / Glaciers area variations in Colombia and Venezuela between 1985 and 2015, with remote sensing data

Rekowsky, Isabel Cristiane January 2016 (has links)
Nesse estudo foram mapeadas e mensuradas as variações de área, elevação mínima e orientação das geleiras da Colômbia e da Venezuela (trópicos internos), entre os anos 1985-2015. Para o mapeamento das áreas das geleiras foram utilizadas como base imagens Landsat, sensores TM, ETM+ e OLI. Às imagens selecionadas foi aplicado o Normalized Difference Snow Index (NDSI), no qual são utilizadas duas bandas em que o alvo apresenta comportamento espectral oposto ou com características bem distintas: bandas 2 e 5 dos sensores TM e ETM+ e bandas 3 e 6 do sensor OLI. Os dados de elevação e orientação das massas de gelo foram obtidos a partir do Modelo Digital de Elevação SRTM (Shuttle Radar Topography Mission – v03). Em 1985, a soma das áreas das sete geleiras estudadas correspondia a 92,84 km², enquanto no último ano estudado (2015/2016) esse valor passou para 36,97 km². A redução de área ocorreu em todas as geleiras analisadas, com taxas de retração anual variando entre 2,49% a.a. e 8,46% a.a. Houve retração das áreas de gelo localizadas em todos os pontos cardeais considerados, bem como, elevação da altitude nas frentes de geleiras. Além da perda de área ocorrida nas menores altitudes, onde a taxa de ablação é mais elevada, também se observou retração em alguns topos, evidenciado pela ocorrência de altitudes menores nos anos finais do estudo, em comparação com os anos iniciais. Como parte das geleiras colombianas está localizada sobre vulcões ativos, essas áreas sofrem influência tanto de fatores externos, quanto de fatores internos, podendo ocorrer perdas de massa acentuadas causadas por erupção e/ou terremoto. / In this study, glaciers located in Colombia and Venezuela (inner tropics) were mapped between 1985-2015. The area of these glaciers was measured and the variations that occurred in each glacier were compared to identify whether the glacier was growing or shrinking. The minimum elevation of the glaciers fronts and the aspect of the glaciers were analyzed. The glaciers areas ware obtained by the use of Landsat images, TM, ETM+ and OLI sensors. The Normalized Difference Snow Index (NDSI) was applied to the selected images, in which two bands were used, where the ice mass has opposite (or very different) spectral behavior: bands 2 and 5 from sensors TM and ETM+, and bands 3 and 6 from sensors OLI. The elevation and the aspect data of the glaciers were obtained from SRTM (Shuttle Radar Topography Mission – v03) Digital Elevation Model. In 1985/1986, the sum of the areas of the seven studied glaciers corresponded to 92.84 km², while in the last year analyzed (2015/2016), this value shrank to 36.97 km². The area shrinkage occurred in all the glaciers that were mapped, with annual decline rates ranging from 2.49%/year to 8.46%/year. It is also possible to observe a decrease of the ice covered in all aspects considered, as well as an elevation in all glaciers fronts. In addition to the area loss occurred at lower altitudes, where the ablation rate is higher than in higher altitudes, shrinkage in some mountain tops was also present, which is evidenced by the occurrence of lower maximum elevations in the final years of the study, when compared with the initial years. Considering that part of the Colombian’s glaciers are located on active volcanoes, these areas are influenced by external and internal factors, and the occurrence of volcanic eruption and/or earthquake can cause sharp mass losses.

Page generated in 0.4423 seconds