• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 9
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 74
  • 43
  • 37
  • 37
  • 37
  • 19
  • 18
  • 16
  • 13
  • 13
  • 10
  • 9
  • 9
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Superoxide dismutase 1 and amyotrophic lateral sclerosis / Superoxid dismutas 1 och amyotrofisk lateralskleros

Jonsson, P. Andreas January 2005 (has links)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons in the spinal cord, brain stem and motor cortex, leading to paralysis, respiratory failure and death. In about 5% of ALS cases, the disease is associated with mutations in the CuZn-superoxide dismutase (hSOD1) gene. As a rule, ALS caused by hSOD1 mutations is inherited dominantly and the mutant hSOD1s cause ALS by the gain of a noxious property. The present study focused on two hSOD1 mutations with widely differing characters. In Scandinavia, ALS caused by the D90A mutation is inherited in a recessive pattern. Elsewhere, families with dominant inheritance have been found. The properties of D90A mutant hSOD1 are very similar to those of the wild-type protein. The G127insTGGG (G127X) mutation causes a 21 amino acid C-terminal truncation which probably results in an unstable protein. The aim of this thesis was to generate transgenic mice expressing D90A and G127X mutant hSOD1s and to compare these mice with each other and with mice expressing other mutant hSOD1s, in search of a common noxious property. The findings were also compared with the results from studies of human CNS tissue. The cause of the different inheritance patterns associated with D90A mutant hSOD1 was investigated by analyzing erythrocytes from heterozygous individuals from dominant and recessive pedigrees. There was no evidence that a putative protective factor in recessive pedigrees acts by down-regulating the synthesis of D90A mutant hSOD1. In cerebrospinal fluid, there was no difference in hSOD1 content between homozygous D90A patients, ALS patients without hSOD1 mutations and controls. hSOD1 cleaved at the N-terminal end was found in both controls and D90A patients, but the proportion was significantly larger in the latter group. This indicates a difference in degradation routes between mutant and wild-type hSOD1. Both D90A and G127X transgenic mice develop an ALS-like phenotype. Similar to humans, the levels of D90A protein were high. The levels of G127X hSOD1 were very low in the tissues but enriched in the CNS. Similarly, in an ALS patient heterozygous for G127X hSOD1, the levels of the mutant protein were overall very low, but highest in affected CNS areas. Despite the very different levels of mutant hSOD1, both D90A and G127X transgenic mice developed similar levels of detergent-resistant aggregates in the spinal cord when terminally ill. Surprisingly, mice overexpressing wild-type hSOD1 also developed detergent-resistant aggregates, although less and later. Most of the hSOD1 in the CNS of transgenic mice was inactive due to deficient copper charging or because of reduced affinity for the metal. The stabilizing intrasubunit disulfide bond of hSOD1 was partially or completely absent in the different hSOD1s. Both these alterations could increase the propensity of mutant hSOD1s to misfold and form aggregates. The results presented here suggest that the motor neuron degeneration caused by mutant hSOD1s may be attributable to long-term exposure to misfolded, aggregation-prone, disulfide-reduced hSOD1s and that the capacity to degrade such hSOD1s is lower in susceptible CNS areas compared with other tissues. The data also suggest that wild-type hSOD1 has the potential to participate in the pathogenesis of sporadic ALS.
52

Pharmakologische Inhibition von Rho-Kinase im Mausmodell der Amyotrophen Lateralsklerose / Pharmacological inhibition of Rho-kinase in the mouse model of amyotrophic lateral sclerosis

Günther, René 23 June 2015 (has links)
No description available.
53

ALS-induced Excitability Changes in Individual Motorneurons and the Spinal Motorneuron Network in SOD1-G93A Mice at Symptom Onset

Draper, Christiana S.I. 19 May 2021 (has links)
No description available.
54

Development of solution NMR method for observation and analysis of proteins inside cells / 核磁気共鳴法による細胞内タンパク質の観測及び手法開発

Murayama, Shuuhei 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19003号 / 工博第4045号 / 新制||工||1622(附属図書館) / 31954 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 白川 昌宏, 教授 佐藤 啓文, 教授 梶 弘典 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
55

NEUROPROTECTIVE STUDIES ON THE MPTP AND SOD1 MOUSE MODELS OF NEURODEGENERATIVE DISEASES

Fontanilla, Christine V. 29 February 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The main, underlying cause of neurodegenerative disease is the progressive loss of neuronal structure or function, whereby central and/or peripheral nervous system circuitry is severely and irreversibly damaged, resulting in the manifestation of clinical symptoms and signs. Neurodegenerative research has revealed many similarities among these diseases: although their clinical presentation and outcomes may differ, many parallels in their pathological mechanisms can be found. Unraveling these relationships and similarities could provide the potential for the discovery of therapeutic advances such that a treatment for one neurologic disease may also be effective for several other neurodegenerative disorders. There is growing awareness that due to the complexity of pathophysiological processes in human disease, specifically targeting or inactivating a single degenerative process or a discrete cellular molecular pathway may be ineffective in the treatment of these multifaceted disorders. Rather, potential therapeutics with a multi-target approach may be required to successfully and effectively control disease progression. Recent advances in neurodegenerative research involve the creation of animal disease models that closely mimic their human counterparts. The use of both toxin- exposure and genetic animal models in combination may give insight into the underlying pathologic mechanisms of neurodegenerative disorders (target identification) leading to the development and screening of prospective treatments and determination of their neuroprotective mechanism (target validation). Taken together, ideal candidates for the treatment of neurodegenerative disease would need to exert their neuroprotective effect on multiple pathological pathways. Previous studies from this laboratory and collaborators have shown that the naturally-occurring compound, caffeic acid phenethyl ester (CAPE), is efficacious for the treatment against neurodegeneration. Because of its versatile abilities, CAPE was chosen for this study as this compound may be able to target the pathogenic pathways shared by two different animal models of neurodegeneration and may exhibit neuroprotection. In addition, adipose-derived stem cell conditioned media (ASC-CM), a biologically-derived reagent containing a multitude of neuroprotective and neurotrophic factors, was selected as ASC-CM has been previously shown to be neuroprotective by using both animal and cell culture models of neurodegeneration.
56

Investigating the Role of an SK Channel Activator on Survival and Motor Function in the SOD1-G93A, ALS Mouse Model

Dancy, Matthew Thomas 23 May 2017 (has links)
No description available.
57

Amyotrophic lateral sclerosis (ALS) associated with superoxide dismutase 1 (SOD1) mutations in British Columbia, Canada : clinical, neurophysiological and neuropathological features

Stewart, Heather G. January 2005 (has links)
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by loss of motor neurons and their supporting cells in the brain, brainstem and spinal cord, resulting in muscle paresis and paralysis including the bulbar (speech, chewing, swallowing) and respiratory muscles. The average age at onset is 55 years, and death due to respiratory failure occurs 2-5 years after symptom onset in ~ 85% of cases. Five to 10% of ALS is familial, and about 20% of familial cases are associated with mutations in the superoxide dismutase 1 (SOD1) gene. To date, 118 SOD1 mutations have been reported worldwide (www alsod.org). All are dominantly inherited, except for the D90A mutation, which is typically recessively inherited. D90A homozygous ALS is associated with long (~14 years) survival, and some atypical symptoms and signs. The reason for this is not known. In contrast, most other SOD1 mutations are associated with average survival, while some are associated with aggressive disease having lower motor neuron predominance and survival less than 12 months. The A4V mutation, which is the most frequently occurring SOD1 mutation in the United States, is an example of the latter. Understanding the pathogenic mechanisms of SOD1 mutants causing widely different disease forms like D90A and A4V is of paramount importance. Overwhelming scientific evidence indicates that mutations in the SOD1 gene are cytotoxic by a “gain of noxious” function, which although not fully understood results in protein aggregation and loss of cell function. This thesis explores different ALS-SOD1 gene mutations in British Columbia (BC), Canada. Two hundred and fifty-three ALS patients were screened for SOD1 mutations, and 12 (4.7%) unrelated patients were found to carry one of 5 different SOD1 mutations: A4V (n=2); G72C (n=1); D76Y (n=1); D90A (n=2); and 113T (n=6). Incomplete penetrance was observed in 3/12 families. Bulbar onset disease was not observed in the SOD1 mutation carriers in this study, but gender distribution was similar to previously reported studies. Age at symptom onset for all patients enrolled, with or without SOD1 mutations, was older than reported in previous studies. On average, patients with SOD1 mutations experience a longer diagnostic delay (22.6 months) compared to patients without mutations (12 months). Two SOD1 patients were originally misdiagnosed including the G72C patient who’s presenting features resembled a proximal myopathy. Neuropathological examination of this patient failed to reveal upper motor neuron disease. The I113T mutation was associated with variable age of onset and survival time, and was found in 2 apparently sporadic cases. The D76Y mutation was also found in an apparently sporadic case. I113T and D76Y are likely influenced by other genetic or environmental factors in some individuals. Two patients were homozygous for the D90A mutation, with clinical features comparable to patients originally described in Scandinavia. Clinical and electrophysiological motor neuron abnormalities were observed in heterozygous relatives of one D90A homozygous patient. The A4V patients were similar to those described in previous studies, although one had significant upper motor neuron disease both clinically and neuropathologically. Clinical neurophysiology is essential in the diagnosis of ALS, and helpful in monitoring disease progression. A number of transcranial magnetic stimulation (TMS) studies may detect early dysfunction of upper motor neurons when imaging techniques lack sensitivity. Peristimulus time histograms (PSTHs), which assess corticospinal function via recording of voluntarily activated single motor units during low intensity TMS of the motor cortex, were used to study 19 ALS patients having 5 different SOD1 mutations (including 8 of the 12 patients identified with SOD1 mutations from BC). Results were compared with idiopathic ALS cases, patients with multiple sclerosis (MS), and healthy controls. Significant differences were found in corticospinal pathophysiology between ALS patients with SOD1 mutations, idiopathic ALS, and MS patients. In addition, different SOD1 mutants were associated with significantly different neurophysiologic abnormalities. D90A homozygous patients show preserved if not exaggerated cortical inhibition and slow central conduction, which may reflect the more benign disease course associated with this mutant. In contrast, A4V patients show cortical hyper-excitability and only slightly delayed central conduction. I113T patients display a spectrum of abnormalities. This suggests mutant specific SOD1 pathology(s) of the corticospinal pathways in ALS.
58

Mutant superoxide dismutase-1-caused pathogenesis in amyotrophic lateral sclerosis

Bergemalm, Daniel, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010. / Härtill 4 uppsatser.
59

Untersuchung der Wirkung des antiaggregativen Compounds anle138b auf Löslichkeit und Toxizität von mutierter SOD1 / Analysis of the impact of the anti-aggregative compond anle138b on solubility and toxicity of mutated SOD1

Kleinknecht, Alexander 07 November 2017 (has links)
No description available.
60

Kv2.1 Dysfunction Underlies the Onset of Symptoms in SOD1-G93A Mouse Model of ALS

Deutsch, Andrew J. 30 May 2023 (has links)
No description available.

Page generated in 0.0285 seconds