• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 9
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 23
  • 18
  • 18
  • 15
  • 14
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

An Intelligent Expert System for Decision Analysis and Support in Multi-Attribute Layout Optimization

Ahmad, Abdul-Rahim January 2005 (has links)
Layout Decision Analysis and Design is a ubiquitous problem in a variety of work domains that is important from both strategic and operational perspectives. It is largely a complex, vague, difficult, and ill-structured problem that requires intelligent and sophisticated decision analysis and design support. <br /><br /> Inadequate information availability, combinatorial complexity, subjective and uncertain preferences, and cognitive biases of decision makers often hamper the procurement of a superior layout configuration. Consequently, it is desirable to develop an intelligent decision support system for layout design that could deal with such challenging issues by providing efficient and effective means of generating, analyzing, enumerating, ranking, and manipulating superior alternative layouts. <br ><br /> We present a research framework and a functional prototype for an interactive Intelligent System for Decision Support and Expert Analysis in Multi-Attribute Layout Optimization (IDEAL) based on soft computing tools. A fundamental issue in layout design is efficient production of superior alternatives through the incorporation of subjective and uncertain design preferences. Consequently, we have developed an efficient and Intelligent Layout Design Generator (ILG) using a generic two-dimensional bin-packing formulation that utilizes multiple preference weights furnished by a fuzzy Preference Inferencing Agent (PIA). The sub-cognitive, intuitive, multi-facet, and dynamic nature of design preferences indicates that an automated Preference Discovery Agent (PDA) could be an important component of such a system. A user-friendly, interactive, and effective User Interface is deemed critical for the success of the system. The effectiveness of the proposed solution paradigm and the implemented prototype is demonstrated through examples and cases. <br /><br /> This research framework and prototype contribute to the field of layout decision analysis and design by enabling explicit representation of experts? knowledge, formal modeling of fuzzy user preferences, and swift generation and manipulation of superior layout alternatives. Such efforts are expected to afford efficient procurement of superior outcomes and to facilitate cognitive, ergonomic, and economic efficiency of layout designers as well as future research in related areas. <br /><br /> Applications of this research are broad ranging including facilities layout design, VLSI circuit layout design, newspaper layout design, cutting and packing, adaptive user interfaces, dynamic memory allocation, multi-processor scheduling, metacomputing, etc.
52

Applications of Soft Computing for Power-Quality Detection and Electric Machinery Fault Diagnosis

Wu, Chien-Hsien 20 November 2008 (has links)
With the deregulation of power industry and the market competition, stable and reliable power supply is a major concern of the independent system operator (ISO). Power-quality (PQ) study has become a more and more important subject lately. Harmonics, voltage swell, voltage sag, and power interruption could downgrade the service quality. In recent years, high speed railway (HSR) and massive rapid transit (MRT) system have been rapidly developed, with the applications of widespread semiconductor technologies in the auto-traction system. The harmonic distortion level worsens due to these increased uses of electronic equipment and non-linear loads. To ensure the PQ, power-quality disturbances (PQD) detection becomes important. A detection method with classification capability will be helpful for detecting disturbance locations and types. Electric machinery fault diagnosis is another issue of considerable attentions from utilities and customers. ISO need to provide a high quality service to retain their customers. Fault diagnosis of turbine-generator has a great effect on the benefit of power plants. The generator fault not only damages the generator itself, but also causes outages and loss of profits. With high-temperature, high-pressure and factors such as thermal fatigues, many components may go wrong, which will not only lead to great economic loss, but sometimes a threat to social security. Therefore, it is necessary to detect generator faults and take immediate actions to cut the loss. Besides, induction motor plays a major role in a power system. For saving cost, it is important to run periodical inspections to detect incipient faults inside the motor. Preventive techniques for early detection can find out the incipient faults and avoid outages. This dissertation developed various soft computing (SC) algorithms for detection including power-quality disturbances (PQD), turbine-generator fault diagnosis, and induction motor fault diagnosis. The proposed SC algorithms included support vector machine (SVM), grey clustering analysis (GCA), and probabilistic neural network (PNN). Integrating the proposed diagnostic procedure and existing monitoring instruments, a well-monitored power system will be constructed without extra devices. Finally, all the methods in the dissertation give reasonable and practical estimation method. Compared with conventional method, the test results showed a high accuracy, good robustness, and a faster processing performance.
53

Projeto, construção e caracterização de um amortecedor ativo controlado por atuador piezoelétrico / Design, construction and characterization controlled by Piezoelectric Actuato

Teixeira, Rafael Luís 22 February 2007 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / This thesis presents the design methodology, the construction of a prototype and the experimental validation of an active vibration damper witch is controlled by a piezoelectric actuator. The proposed device has two flexible metallic bellows connected to a rigid reservoir filled with a viscous fluid. When one of the bellows is connected to a vibrating structure a periodic flow passes through a variable internal orifice and the damping effect is produced. The size of the orifice is adjusted by a piezoelectric control system that positions the conical core into a conical cavity. The damper device finite element computational model was developed considering that the valve body is rigid and that the fluid - structure iteration occurs between the fluid and the flexible bellows. This model is discretized using a lagrangean-eulrian formulation. The actuator has a closed flexible metallic structure that amplifies the displacement produced by an internally mounted stack of piezoelectric ceramic layers, and it is also modeled by the finite element method. The damper prototype was built and experimental tests using impulsive and harmonic excitations were conducted to determine its dynamic behavior and also to validate the developed computational models. The simulation and experimental results are compared by curves that relate the damping coefficient with the size of the orifice. Reduced dynamical models are proposed to represent the behavior of the damper device with fixed and variable orifice sizes. A local classic PID controller for the piezoelectric actuator was design to assure that the valve core assume the correct position, providing the commanded damping coefficient. The damper device was applied to a vibration system that represents the model of a quarter-car vehicle. One on-off controller and another fuzzy controller were design to control the vibrations of the vehicle equipped with the proposed active damper. Experimental tests shown that the damping coefficient values, commanded by the global controller, were achieved in time intervals lesser than 10 milliseconds. These results demonstrate the very good performance of the proposed damper device. / Esta tese apresenta o desenvolvimento de uma metodologia de projeto, a construção de um protótipo e a validação experimental de um amortecedor ativo de vibrações controlado por um atuador piezelétrico. O dispositivo proposto contém um circuito hidráulico constituído por dois foles metálicos flexíveis conectados a um reservatório rígido cheio com um fluido viscoso. Quando um dos foles é conectado a uma estrutura vibratória um fluxo de fluido é forçado através de um orifício variável, produzindo o efeito de amortecimento. O tamanho do orifício é ajustado por um sistema piezelétrico de controle que posiciona um obturador cônico numa cavidade cônica. O amortecedor é modelado pela técnica dos elementos finitos considerando que o corpo da válvula rígido e que existe interação entre o fluido interno e a estrutura flexível dos foles. Este modelo é discretizado utilizando uma formulação Lagrangeana Euleriana. O atuador, composto por uma estrutura metálica flexível que amplifica o deslocamento produzido por uma pilha de cerâmicas piezelétricas, também é modelado pela técnica dos elementos finitos. Foi construído um protótipo do amortecedor e realizados ensaios experimentais com excitações impulsivas e harmônicas, para determinar o comportamento dinâmico e para validar os modelos computacionais desenvolvidos. A relação entre o tamanho do orifício e a correspondente força de amortecimento produzida é obtida tanto a partir de simulações feitas com o modelo computacional, como através de ensaios com o protótipo, para valores do tamanho do orifício fixos e variáveis. Propõe-se o uso de modelos dinâmicos reduzidos para representar a dinâmica do amortecedor. Para garantir que o atuador piezelétrico posicione corretamente o obturador da válvula, foi incorporado ao amortecedor um controlador local clássico tipo PID. O amortecedor ativo foi aplicado a um sistema vibratório que representa o modelo de um quarto de um automóvel. Desenvolveu-se projeto de um controlador liga - desliga e de um controlador fuzzy para controlar a vibração do veículo equipado com o amortecedor ativo. Testes experimentais mostraram que as alterações no valor do coeficiente de amortecimento da suspensão, comandadas pelo controlador global, foram realizadas em tempos inferiores a 10 milisegundos, indicando excelente desempenho do amortecedor proposto. / Doutor em Engenharia Mecânica
54

A SOM+ Diagnostic System for Network Intrusion Detection

Langin, Chester Louis 01 August 2011 (has links)
This research created a new theoretical Soft Computing (SC) hybridized network intrusion detection diagnostic system including complex hybridization of a 3D full color Self-Organizing Map (SOM), Artificial Immune System Danger Theory (AISDT), and a Fuzzy Inference System (FIS). This SOM+ diagnostic archetype includes newly defined intrusion types to facilitate diagnostic analysis, a descriptive computational model, and an Invisible Mobile Network Bridge (IMNB) to collect data, while maintaining compatibility with traditional packet analysis. This system is modular, multitaskable, scalable, intuitive, adaptable to quickly changing scenarios, and uses relatively few resources.
55

Paralelní trénování hlubokých neuronových sítí / Parallel Deep Learning

Šlampa, Ondřej January 2017 (has links)
Aim of this thesis is to propose how to evaluate favourableness of parallel deep learning. In this thesis I analyze parallel deep learning and I focus on its length. I take into account gradient computation length and weight transportation length. Result of this thesis is proposal of equations, which can estimate the speedup on multiple workers. These equations can be used to determine ideal number of workers for training.
56

Zjednodušené násobení v konvolučních neuronových sítích / Simplified Multiplication in Convolutional Neural Networks

Juhaňák, Pavel January 2019 (has links)
This thesis provides an introduction to classical and convolutional neural networks. It describes how hardware multiplication is conventionally performed and optimized. A simplified multiplication method is proposed, namely multiplierless multiplication. This method is implemented and integrated into the TypeCNN library. The cost of the hardware solution of both conventional and simplified multipliers is estimated. The thesis also introduces software tools developed to work with convolutional neural networks and datasets used to test them in the image classification task. Test architectures and experimentation methodology are proposed. The results are evaluated, and both the classification accuracy and cost of the hardware solution are discussed.
57

Využití Soft Computingu v rámci řízení objednávkového cyklu / The Utilization of Soft Computing in Ordering Cycle Management

Šustrová, Tereza January 2016 (has links)
This doctoral thesis deals with possibilities of using advanced methods of decision-making - Soft Computing, in company’s ordering cycle management. The main aim of the thesis is to propose an artificial neural network model with an optimal architecture for ordering cycle management within the supply chain management. The proposed model will be employed in an organization involved in retailing to ensure smooth material flow. A design and verification of artificial neural networks model for sales prediction is also part of this doctoral thesis as well as a comparison of results and usability with standard and commonly used statistical methods. Furthermore, the thesis deals with finding a suitable artificial neural network model with architecture capable of solving the lot-size problem according to specified inputs. Methods of statistical data processing, economical modelling and advanced decision-making (Soft Computing) were utilized during the model designing process.
58

Νέες μέθοδοι εκμάθησης για ασαφή γνωστικά δίκτυα και εφαρμογές στην ιατρική και βιομηχανία / New learning techniques to train fuzzy cognitive maps and applications in medicine and industry

Παπαγεωργίου, Ελπινίκη 25 June 2007 (has links)
Αντικείµενο της διατριβής είναι η ανάπτυξη νέων µεθοδολογιών εκµάθησης και σύγκλισης των Ασαφών Γνωστικών ∆ικτύων που προτείνονται για τη βελτίωση και προσαρµογή της συµπεριφοράς τους, καθώς και για την αύξηση της απόδοσής τους, αναδεικνύοντάς τα σε αποτελεσµατικά δυναµικά συστήµατα µοντελοποίησης. Τα νέα βελτιωµένα Ασαφή Γνωστικά ∆ίκτυα, µέσω της εκµάθησης και προσαρµογής των βαρών τους, έχουν χρησιµοποιηθεί στην ιατρική σε θέµατα διάγνωσης και υποστήριξης στη λήψη απόφασης, καθώς και σε µοντέλα βιοµηχανικών συστηµάτων που αφορούν τον έλεγχο διαδικασιών, µε πολύ ικανοποιητικά αποτελέσµατα. Στη διατριβή αυτή παρουσιάζονται, αξιολογούνται και εφαρµόζονται δύο νέοι αλγόριθµοι εκµάθησης χωρίς επίβλεψη των Ασαφών Γνωστικών ∆ικτύων, οι αλγόριθµοι Active Hebbian Learning (AHL) και Nonlinear Hebbian Learning (NHL), βασισµένοι στον κλασσικό αλγόριθµό εκµάθησης χωρίς επίβλεψη τύπου Hebb των νευρωνικών δικτύων, καθώς και µια νέα προσέγγιση εκµάθησης των Ασαφών Γνωστικών ∆ικτύων βασισµένη στους εξελικτικούς αλγορίθµους και πιο συγκεκριµένα στον αλγόριθµο Βελτιστοποίησης µε Σµήνος Σωµατιδίων και στον ∆ιαφοροεξελικτικό αλγόριθµο. Οι προτεινόµενοι αλγόριθµοι AHL και NHL στηρίζουν νέες µεθοδολογίες εκµάθησης για τα ΑΓ∆ που βελτιώνουν τη λειτουργία, και την αξιοπιστία τους, και που παρέχουν στους εµπειρογνώµονες του εκάστοτε προβλήµατος που αναπτύσσουν το ΑΓ∆, την εκµάθηση των παραµέτρων για τη ρύθµιση των αιτιατών διασυνδέσεων µεταξύ των κόµβων. Αυτοί οι τύποι εκµάθησης που συνοδεύονται από την σωστή γνώση του εκάστοτε προβλήµατος-συστήµατος, συµβάλλουν στην αύξηση της απόδοσης των ΑΓ∆ και διευρύνουν τη χρήση τους. Επιπρόσθετα µε τους αλγορίθµους εκµάθησης χωρίς επίβλεψη τύπου Hebb για τα ΑΓ∆, αναπτύσσονται και προτείνονται νέες τεχνικές εκµάθησης των ΑΓ∆ βασισµένες στους εξελικτικούς αλγορίθµους. Πιο συγκεκριµένα, προτείνεται µια νέα µεθοδολογία για την εφαρµογή του εξελικτικού αλγορίθµου Βελτιστοποίησης µε Σµήνος Σωµατιδίων στην εκµάθηση των Ασαφών Γνωστικών ∆ικτύων και πιο συγκεκριµένα στον καθορισµό των βέλτιστων περιοχών τιµών των βαρών των Ασαφών Γνωστικών ∆ικτύων. Με τη µεθοδο αυτή λαµβάνεται υπόψη η γνώση των εµπειρογνωµόνων για τον σχεδιασµό του µοντέλου µε τη µορφή περιορισµών στους κόµβους που µας ενδιαφέρουν οι τιµές των καταστάσεών τους, που έχουν οριστοί ως κόµβοι έξοδοι του συστήµατος, και για τα βάρη λαµβάνονται υπόψη οι περιοχές των ασαφών συνόλων που έχουν συµφωνήσει όλοι οι εµπειρογνώµονες. Έτσι θέτoντας περιορισµούς σε όλα τα βάρη και στους κόµβους εξόδου και καθορίζοντας µια κατάλληλη αντικειµενική συνάρτηση για το εκάστοτε πρόβληµα, προκύπτουν κατάλληλοι πίνακες βαρών (appropriate weight matrices) που µπορούν να οδηγήσουν το σύστηµα σε επιθυµητές περιοχές λειτουργίας και ταυτόχρονα να ικανοποιούν τις ειδικές συνθήκες- περιορισµούς του προβλήµατος. Οι δύο νέες µέθοδοι εκµάθησης χωρίς επίβλεψη που έχουν προταθεί για τα ΑΓ∆ χρησιµοποιούνται και εφαρµόζονται µε επιτυχία σε δυο πολύπλοκα προβλήµατα από το χώρο της ιατρικής, στο πρόβληµα λήψης απόφασης στην ακτινοθεραπεία και στο πρόβληµα κατηγοριοποίησης των καρκινικών όγκων της ουροδόχου κύστης σε πραγµατικές κλινικές περιπτώσεις. Επίσης όλοι οι προτεινόµενοι αλγόριθµοι εφαρµόζονται σε µοντέλα βιοµηχανικών συστηµάτων που αφορούν τον έλεγχο διαδικασιών µε πολύ ικανοποιητικά αποτελέσµατα. Οι αλγόριθµοι αυτοί, όπως προκύπτει από την εφαρµογή τους σε συγκεκριµένα προβλήµατα, βελτιώνουν το µοντέλο του ΑΓ∆, συµβάλλουν σε ευφυέστερα συστήµατα και διευρύνουν τη δυνατότητα εφαρµογής τους σε πραγµατικά και πολύπλοκα προβλήµατα. Η κύρια συνεισφορά αυτής της διατριβής είναι η ανάπτυξη νέων µεθοδολογιών εκµάθησης και σύγκλισης των Ασαφών Γνωστικών ∆ικτύων προτείνοντας δυο νέους αλγορίθµους µη επιβλεπόµενης µάθησης τύπου Hebb, τον αλγόριθµο Active Hebbian Learning και τον αλγόριθµο Nonlinear Hebbian Learning για την προσαρµογή των βαρών των διασυνδέσεων µεταξύ των κόµβων των Ασαφών Γνωστικών ∆ικτύων, καθώς και εξελικτικούς αλγορίθµους βελτιστοποιώντας συγκεκριµένες αντικειµενικές συναρτήσεις για κάθε εξεταζόµενο πρόβληµα. Τα νέα βελτιωµένα Ασαφή Γνωστικά ∆ίκτυα µέσω των αλγορίθµων προσαρµογής των βαρών τους έχουν χρησιµοποιηθεί για την ανάπτυξη ενός ∆ιεπίπεδου Ιεραρχικού Συστήµατος για την υποστήριξη λήψης απόφασης στην ακτινοθεραπεία, για την ανάπτυξη ενός διαγνωστικού εργαλείου για την κατηγοριοποίηση του βαθµού κακοήθειας των καρκινικών όγκων της ουροδόχου κύστης, καθώς και για την επίλυση βιοµηχανικών προβληµάτων για τον έλεγχο διαδικασιών. / The main contribution of this Dissertation is the development of new learning and convergence methodologies for Fuzzy Cognitive Maps that are proposed for the improvement and adaptation of their behaviour, as well as for the increase of their performance, electing them in effective dynamic systems of modelling. The new improved Fuzzy Cognitive Maps, via the learning and adaptation of their weights, have been used in medicine for diagnosis and decision-making, as well as to alleviate the problem of the potential uncontrollable convergence to undesired states in models of industrial process control systems, with very satisfactory results. In this Dissertation are presented, validated and implemented two new learning algorithms without supervision for Fuzzy Cognitive Maps, the algorithms Active Hebbian Learning (AHL) and Nonlinear Hebbian Learning (NHL), based on the classic unsupervised Hebb-type learning algorithm of neural networks, as well as a new approach of learning for Fuzzy Cognitive Maps based on the evolutionary algorithms and more specifically on the algorithm of Particles Swarm Optimization and on the Differential Evolution algorithm. The proposed algorithms AHL and NHL support new learning methodologies for FCMs that improve their operation, efficiency and reliability, and that provide in the experts of each problem that develop the FCM, the learning of parameters for the regulation (fine-tuning) of cause-effect relationships (weights) between the concepts. These types of learning that are accompanied with the right knowledge of each problem-system, contribute in the increase of performance of FCMs and extend their use. Additionally to the unsupervised learning algorithms of Hebb-type for the FCMs, are developed and proposed new learning techniques of FCMs based on the evolutionary algorithms. More specifically, it is proposed a new learning methodology for the application of evolutionary algorithm of Particle Swarm Optimisation in the adaptation of FCMs and more concretely in the determination of the optimal regions of weight values of FCMs. With this method it is taken into consideration the experts’ knowledge for the modelling with the form of restrictions in the concepts that interest us their values, and are defined as output concepts, and for weights are received the arithmetic values of the fuzzy regions that have agreed all the experts. Thus considering restrictions in all weights and in the output concepts and determining a suitable objective function for each problem, result appropriate weight matrices that can lead the system to desirable regions of operation and simultaneously satisfy specific conditions of problem. The first two proposed methods of unsupervised learning that have been suggested for the FCMs are used and applied with success in two complicated problems in medicine, in the problem of decision-making in the radiotherapy process and in the problem of tumor characterization for urinary bladder in real clinical cases. Also all the proposed algorithms are applied in models of industrial systems that concern the control of processes with very satisfactory results. These algorithms, as it results from their application in concrete problems, improve the model of FCMs, they contribute in more intelligent systems and they extend their possibility of application in real and complex problems. The main contribution of the present Dissertation is to develop new learning and convergence methodologies for Fuzzy Cognitive Maps proposing two new unsupervised learning algorithms, the algorithm Active Hebbian Learning and the algorithm Nonlinear Hebbian Learning for the adaptation of weights of the interconnections between the concepts of Fuzzy Cognitive Maps, as well as Evolutionary Algorithms optimizing concrete objective functions for each examined problem. New improved Fuzzy Cognitive Maps via the algorithms of weight adaptation have been used for the development of an Integrated Two-level hierarchical System for the support of decision-making in the radiotherapy, for the development of a new diagnostic tool for tumour characterization of urinary bladder, as well as for the solution of industrial process control problems.
59

Nelineární řízení komplexních soustav s využitím evolučních přístupů / Nonlinear Control of Complex Systems by utilization of Evolutionary Approaches

Minář, Petr Unknown Date (has links)
Control theory of complex systems by utilization of artificial intelligent algorithms is relatively new science field and it can be used in many areas of technical practise. Best known algorithms to solved similar tasks are genetic algorithm, differential evolution, HC12 Nelder-Mead method, fuzzy logic and grammatical evolution. Complex solution is presented at selected examples from mathematical nonlinear systems to examples of anthems design and stabilization of deterministic chaos. The goal of this thesis is present examples of implementation and utilization of artificial algorithms by multi-objective optimization. To achieve optimal results is used designed software solution by multi-platform application, which used Matlab and Java interfaces. The software solution integrate every algorithms of this thesis to complex solution and it extends possible application of those approaches to real systems and practical world.
60

Gramatická evoluce v optimalizaci software / Grammatical Evolution in Software Optimization

Pečínka, Zdeněk January 2017 (has links)
This master's thesis offers a brief introduction to evolutionary computation. It describes and compares the genetic programming and grammar based genetic programming and their potential use in automatic software repair. It studies possible applications of grammar based genetic programming on automatic software repair. Grammar based genetic programming is then used in design and implementation of a new method for automatic software repair. Experimental evaluation of the implemented automatic repair was performed on set of test programs.

Page generated in 0.324 seconds