• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Elaboration par chimie douce, mise en forme et propriétés électriques de conducteurs ioniques nanostructurés / Elaboration by soft chemistry, shaping and electrical properties of Nanostructured ionic conductors

Abramova, Alla 15 December 2014 (has links)
Le but de ce travail de thèse, effectué dans le cadre du programme Européen IRSES « Nanolicom », était d’étudier l’influence de la nanostructuration sur les propriétés de transport de deux matériaux conducteurs par les ions lithium, la pérovskite LLTO (Li0.3La0.57TiO3) et le nasicon LATPO (Li1.3Al0.3Ti1.7(PO4)3).Une première partie importante de cette thèse a été consacrée à l’exploration et au développement de méthodes de synthèse par chimie douce plus favorables à la préparation de poudres nanométriques : la voie sol-gel, la voie des complexes polymérisables, la synthèse hydro-solvothermale et la réalisation de microémulsions. Les matériaux obtenusont ensuite été caractérisés par diffraction des rayons X, analyses thermiques et microscopies électroniques.La mise en forme des échantillons ainsi que leur densification ont également fait l’objet d’une étude approfondie. En effet, la détermination des propriétés de transport des matériaux nécessite l’utilisation de céramiques denses mais il est difficile de conserver le caractère nanostructuré des poudres lors de l’étape de frittage. Finalement, les mesures de conductivitésioniques ont été réalisées par spectroscopie d’impédance. L’ensemble des résultats obtenus a ensuite été comparé à ce qui a déjà été observé et reporté dans la littérature pour les composés microstructurés de même formulation. / The aim of this thesis, which has been carried out within the European program « Nanolicom », was to study the influence of the nanostructuration on the transport properties of two lithium ionic conductors, the perovskite LLTO (Li0.3La0.57TiO3) and the nasicon LATPO (Li1.3Al0.3Ti1.7(PO4)3).The first part of this thesis is devoted to the exploration and to the optimization of the best soft chemistry route in order to get nanometric powders: sol-gel route, hydro-solvothermal synthesis, reversed microemulsion method and complex polymerizable Pechini method. The obtained materials were characterized by X-ray diffraction, thermal analysis andelectronic microscopy. Shaping and sintering of the samples were also thoroughly studied. Indeed, the determination of transport properties of the materials requires the use of dense ceramics but it is difficult to preserve the nanostructured character of the powders during the sintering step. Finally, the ionic conductivity measurements were carried out by compleximpedance spectroscopy. All results were then compared to what has been observed and reported in the literature for microstructured compounds of the same formulation.
12

Nano-chemo-mechanics of advanced materials for hydrogen storage and lithium battery applications

Huang, Shan 01 November 2011 (has links)
Chemo-mechanics studies the material behavior and phenomena at the interface of mechanics and chemistry. Material failures due to coupled chemo-mechanical effects are serious roadblocks in the development of renewable energy technologies. Among the sources of renewable energies for the mass market, hydrogen and lithium-ion battery are promising candidates due to their high efficiency and easiness of conversion into other types of energy. However, hydrogen will degrade material mechanical properties and lithium insertion can cause electrode failures in battery owing to their high mobilities and strong chemo-mechanical coupling effects. These problems seriously prevent the large-scale applications of these renewable energy sources. In this thesis, the atomistic and continuum modeling are performed to study the chemical-mechanical failures. The objective is to understand the hydrogen embrittlement of grain boundary engineered metals and the lithium insertion-induced fracture in alloy electrodes for lithium-ion batteries. Hydrogen in metallic containment systems such as high-pressure vessels and pipelines causes the degradation of their mechanical properties that can result in sudden catastrophic fracture. A wide range of hydrogen embrittlement phenomena was attributed to the loss of cohesion of interfaces (between grains, inclusion and matrix, or phases) due to interstitially dissolved hydrogen. Our modeling and simulation of hydrogen embrittlement will address the question of why susceptibility to hydrogen embrittlement in metallic materials can be markedly reduced by grain boundary engineering. Implications of our results for efficient hydrogen storage and transport at high pressures are discussed. Silicon is one of the most promising anode materials for Li-ion batteries (LIB) because of the highest known theoretical charge capacity. However, Si anodes often suffer from pulverization and capacity fading. This is caused by the large volume changes of Si (~300%) upon Li insertion/extraction close to the theoretical charging/discharging limit. In particular, large incompatible deformation between areas of different Li contents tends to initiate fracture, leading to electro-chemical-mechanical failures of Si electrodes. In order to understand the chemo-mechanical mechanisms, we begin with the study of basic fracture modes in pure silicon, and then study the diffusion induced deformation and fracture in lithiated Si. Results have implications for increasing battery capacity and reliability. To improve mechanical stability of LIB anode, failure mechanisms of silicon and coated tin-oxide nanowires have been studied at continuum level. It's shown that anisotropic diffusivity and anisotropic deformation play vital roles in lithiation process. Our predictions of fracture initiation and evolution are verified by in situ experiment observations. Due to the mechanical confinement of the coating layers, our study demonstrates that it is possible to simultaneously control the electrochemical reaction rate and the mechanical strain of the electrode materials through carbon or aluminum coating, which opens new avenues of designing better lithium ion batteries. This thesis addresses the nano-chemo-mechanical failure problems in two green energy-carrier systems toward improving the performance of Li-ion battery anode and hydrogen storage system. It provides an atomistic and continuum modeling framework for the study of chemo-mechanics of advanced materials such as nano-structured metals and alloys. The results help understand the chemical effects of impurities on the mechanical properties of host materials with different metallic and covalent bonding characteristics.
13

Metastabile intermetallische Phasen durch Niedertemperaturtransformationen von Subhalogeniden

Kaiser, Martin 06 December 2014 (has links) (PDF)
Maßgeschneiderte Eigenschaften von Funktionsmaterialien sind ein fundamentaler Aspekt für die Technologien unserer Gesellschaft und deren Weiterentwicklung. In diesem Zusammenhang bilden die Modifizierung bestehender Synthesestrategien und die Entwicklung neuartiger Synthesewege die grundlegende Voraussetzung für Innovation. Der Zugang zu den benötigten Materialien wird in den bis dato angewandten Synthesemethoden häufig durch die thermodynamische Stabilität einer Verbindung begrenzt. Zielstellung der vorliegenden Arbeit ist es, eine Strategie zur postsynthetischen Umwandlung und Modifizierung bereits vorhandener komplex strukturierter Feststoffe anzuwenden, durch die es gelingt, Zugang zu weiteren Materialien zu erhalten. Als Feststoffprekursoren wurden hierfür verschiedene ternäre und quaternäre, bismutreiche Subhalogenide gewählt, die bei niedrigen Temperaturen bis 70 °C mit dem Reduktionsmittel n-Butyllithium (nBuLi) zur Reaktion gebracht wurden, um diese in topochemischen Reaktionen zu neuen intermetallischen Phasen umzuwandeln. Die Bismutsubiodide Bi12Ni4I3, Bi8Ni8SI2 und Bi28Ni25I5 enthalten intermetallische Stäbe, deren Querschnitte nur vier bis elf Atome umfassen, was effektiven Durchmessern von ca. 0,8 bis 1,2 nm entspricht. Zudem befinden sich Iodidionen in den Kristallstrukturen, die die metallischen Stäbe voneinander separieren. Die reduktiven Behandlungen dieser Feststoffprekursoren führten jeweils zur quantitativen Deinterkalation der Iodidionen und dadurch zur Zusammenlagerung der metallischen Stäbe zu kompakten Stabpackungen. In Pseudomorphosen wurden zum einen Kristalle erhalten, die eine Vielzahl parallel angeordneter Bi3Ni-Faserbündel enthielten, zum anderen bildeten sich die bisher unbekannten, kristallinen Phasen Bi8Ni8S und Bi28Ni25. Während bei den Umwandlungen die strukturellen Charakteristiken der intermetallischen Teilstrukturen der Bismutsubiodide auf die reduzierten Phasen übertragen werden, ändern sich die elektronischen Situationen mit der Variation der Elektronenzahl. Dies lässt sich besonders gut am Beispiel der Umwandlung des Bismutsubiodids Bi28Ni25I5 in die reduzierte Phase Bi28Ni25 verdeutlichen. Die elektronische Struktur ändert sich durch die Reduktion kaum, sodass die zusätzlichen Elektronen im intermetallischen Teil antibindende Zustände füllen. Das intermetallische Bindungssystem verhält sich dabei wie ein strukturell rigides Elektronenreservoir und toleriert die Änderung der Elektronenzahl bei der topochemischen Umwandlung zu Bi28Ni25. Mit der elektronisch ungünstigen Situation geht die Metastabilität der reduzierten intermetallischen Phase einher. Die reduktive Behandlung des Bismutsubiodids Bi13Pt3I7 führte nicht nur zur selektiven topochemischen Deinterkalation von Iodidionen sondern zusätzlich zum Ausbau von Bismutatomen, wodurch die in Bi13Pt3I7 vorhandenen Iodidobismutatschichten in Iodidschichten umgewandelt werden. Die intermetallischen Schichten der Ausgangsverbindung bleiben erhalten und nähern sich an, sodass das bis dato unbekannte Bismutsubiodid Bi12Pt3I5 resultiert. Das topotaktische Fortbestehen der intermetallischen Schichten zeigt sich dabei an intermediär gebildeten Kompositkristallen aus Mutter- und Tochterverbindung. Durch den Abbau der isolierenden Iodidobismutat¬schichten erfolgen die elektronische Kopplung der intermetallischen Schichten und der Übergang des zwei-dimensionalen Metalls Bi13Pt3I7 in das dreidimensionale Metall Bi12Pt3I5. Die topochemische Reaktion wird durch eine Reaktionstemperatur von 45 °C limitiert: Bei erhöhter Reaktionstemperatur bis 70 °C tritt eine Umstrukturierung unter weiterem Iod- und Bismutausbau auf, und die metastabile, binäre Phase Bi2Pt(hP9) wird aufgebaut. Die dichte Kristallstruktur des erstmals dargestellten Bismutsubchlorids Bi12Rh3Cl2 baut sich aus einem intermetallischen [Bi4Rh]-Netzwerk auf, in dessen Kanäle Chloridionen eingeschlossen sind. Im Zuge der Niedertemperaturreaktion mit nBuLi erfolgt ein unerwarteter quantitativer Austausch der Chloridionen gegen Bismutatome, der die Kristalle des Subchlorids in Kristalle der binären Verbindung Bi14Rh3 überführt. Die kristallchemische Analyse zeigte, dass den [RhBi8/2]-Antiprismen des [Bi4Rh]-Netzwerks die Funktion von Scharnieren zukommt, welche eine Aufweitung des intermetallischen Netzwerks ermöglichen. So entstehen breite Diffusionspfade, und es resultiert ein dreidimensionales Transportsystem für den enormen Massetransport durch den Kristall. Bei der Austauschreaktion werden die zuvor unabhängig voneinander leitenden intermetallischen Stränge kantenverknüpfter [RhBi8/2]-Würfel elektrisch kontaktiert. Die physikalischen Eigenschaften ändern sich dabei maßgeblich: Aus dem eingeschränkten Metall Bi12Rh3Cl2 entsteht der metastabile Supraleiter Bi14Rh3. Mit zunehmender Kenntnis über die Strategien zur postsynthetischen Umwandlung und Modifizierung komplexer Strukturen können diese grundsätzlich dazu beitragen, Materialien mit technologisch relevanten Eigenschaften darzustellen. Insbesondere Phasen, die nur bei hohen Temperaturen thermodynamische Stabilität erlangen oder sogar unter allen Bedingungen metastabil vorliegen, werden durch die geschickte Wahl der Synthesestrategie zugänglich. Möglicherweise werden mit dem wachsenden Wissen zu neuartigen Synthesestrategien die chemischen und physikalischen Eigenschaften eines Materials auf diesem Weg gezielt veränderbar. Insbesondere die herausragenden Stabilitäten der nanoskaligen, intermetallischen Stäbe werfen zudem die Frage auf, ob diese durch die Reaktion mit oberflächenaktiven Reagenzien vereinzelt werden können, um neuartige nanoskalige Leiter herzustellen.
14

Metastabile intermetallische Phasen durch Niedertemperaturtransformationen von Subhalogeniden

Kaiser, Martin 25 November 2014 (has links)
Maßgeschneiderte Eigenschaften von Funktionsmaterialien sind ein fundamentaler Aspekt für die Technologien unserer Gesellschaft und deren Weiterentwicklung. In diesem Zusammenhang bilden die Modifizierung bestehender Synthesestrategien und die Entwicklung neuartiger Synthesewege die grundlegende Voraussetzung für Innovation. Der Zugang zu den benötigten Materialien wird in den bis dato angewandten Synthesemethoden häufig durch die thermodynamische Stabilität einer Verbindung begrenzt. Zielstellung der vorliegenden Arbeit ist es, eine Strategie zur postsynthetischen Umwandlung und Modifizierung bereits vorhandener komplex strukturierter Feststoffe anzuwenden, durch die es gelingt, Zugang zu weiteren Materialien zu erhalten. Als Feststoffprekursoren wurden hierfür verschiedene ternäre und quaternäre, bismutreiche Subhalogenide gewählt, die bei niedrigen Temperaturen bis 70 °C mit dem Reduktionsmittel n-Butyllithium (nBuLi) zur Reaktion gebracht wurden, um diese in topochemischen Reaktionen zu neuen intermetallischen Phasen umzuwandeln. Die Bismutsubiodide Bi12Ni4I3, Bi8Ni8SI2 und Bi28Ni25I5 enthalten intermetallische Stäbe, deren Querschnitte nur vier bis elf Atome umfassen, was effektiven Durchmessern von ca. 0,8 bis 1,2 nm entspricht. Zudem befinden sich Iodidionen in den Kristallstrukturen, die die metallischen Stäbe voneinander separieren. Die reduktiven Behandlungen dieser Feststoffprekursoren führten jeweils zur quantitativen Deinterkalation der Iodidionen und dadurch zur Zusammenlagerung der metallischen Stäbe zu kompakten Stabpackungen. In Pseudomorphosen wurden zum einen Kristalle erhalten, die eine Vielzahl parallel angeordneter Bi3Ni-Faserbündel enthielten, zum anderen bildeten sich die bisher unbekannten, kristallinen Phasen Bi8Ni8S und Bi28Ni25. Während bei den Umwandlungen die strukturellen Charakteristiken der intermetallischen Teilstrukturen der Bismutsubiodide auf die reduzierten Phasen übertragen werden, ändern sich die elektronischen Situationen mit der Variation der Elektronenzahl. Dies lässt sich besonders gut am Beispiel der Umwandlung des Bismutsubiodids Bi28Ni25I5 in die reduzierte Phase Bi28Ni25 verdeutlichen. Die elektronische Struktur ändert sich durch die Reduktion kaum, sodass die zusätzlichen Elektronen im intermetallischen Teil antibindende Zustände füllen. Das intermetallische Bindungssystem verhält sich dabei wie ein strukturell rigides Elektronenreservoir und toleriert die Änderung der Elektronenzahl bei der topochemischen Umwandlung zu Bi28Ni25. Mit der elektronisch ungünstigen Situation geht die Metastabilität der reduzierten intermetallischen Phase einher. Die reduktive Behandlung des Bismutsubiodids Bi13Pt3I7 führte nicht nur zur selektiven topochemischen Deinterkalation von Iodidionen sondern zusätzlich zum Ausbau von Bismutatomen, wodurch die in Bi13Pt3I7 vorhandenen Iodidobismutatschichten in Iodidschichten umgewandelt werden. Die intermetallischen Schichten der Ausgangsverbindung bleiben erhalten und nähern sich an, sodass das bis dato unbekannte Bismutsubiodid Bi12Pt3I5 resultiert. Das topotaktische Fortbestehen der intermetallischen Schichten zeigt sich dabei an intermediär gebildeten Kompositkristallen aus Mutter- und Tochterverbindung. Durch den Abbau der isolierenden Iodidobismutat¬schichten erfolgen die elektronische Kopplung der intermetallischen Schichten und der Übergang des zwei-dimensionalen Metalls Bi13Pt3I7 in das dreidimensionale Metall Bi12Pt3I5. Die topochemische Reaktion wird durch eine Reaktionstemperatur von 45 °C limitiert: Bei erhöhter Reaktionstemperatur bis 70 °C tritt eine Umstrukturierung unter weiterem Iod- und Bismutausbau auf, und die metastabile, binäre Phase Bi2Pt(hP9) wird aufgebaut. Die dichte Kristallstruktur des erstmals dargestellten Bismutsubchlorids Bi12Rh3Cl2 baut sich aus einem intermetallischen [Bi4Rh]-Netzwerk auf, in dessen Kanäle Chloridionen eingeschlossen sind. Im Zuge der Niedertemperaturreaktion mit nBuLi erfolgt ein unerwarteter quantitativer Austausch der Chloridionen gegen Bismutatome, der die Kristalle des Subchlorids in Kristalle der binären Verbindung Bi14Rh3 überführt. Die kristallchemische Analyse zeigte, dass den [RhBi8/2]-Antiprismen des [Bi4Rh]-Netzwerks die Funktion von Scharnieren zukommt, welche eine Aufweitung des intermetallischen Netzwerks ermöglichen. So entstehen breite Diffusionspfade, und es resultiert ein dreidimensionales Transportsystem für den enormen Massetransport durch den Kristall. Bei der Austauschreaktion werden die zuvor unabhängig voneinander leitenden intermetallischen Stränge kantenverknüpfter [RhBi8/2]-Würfel elektrisch kontaktiert. Die physikalischen Eigenschaften ändern sich dabei maßgeblich: Aus dem eingeschränkten Metall Bi12Rh3Cl2 entsteht der metastabile Supraleiter Bi14Rh3. Mit zunehmender Kenntnis über die Strategien zur postsynthetischen Umwandlung und Modifizierung komplexer Strukturen können diese grundsätzlich dazu beitragen, Materialien mit technologisch relevanten Eigenschaften darzustellen. Insbesondere Phasen, die nur bei hohen Temperaturen thermodynamische Stabilität erlangen oder sogar unter allen Bedingungen metastabil vorliegen, werden durch die geschickte Wahl der Synthesestrategie zugänglich. Möglicherweise werden mit dem wachsenden Wissen zu neuartigen Synthesestrategien die chemischen und physikalischen Eigenschaften eines Materials auf diesem Weg gezielt veränderbar. Insbesondere die herausragenden Stabilitäten der nanoskaligen, intermetallischen Stäbe werfen zudem die Frage auf, ob diese durch die Reaktion mit oberflächenaktiven Reagenzien vereinzelt werden können, um neuartige nanoskalige Leiter herzustellen.:1 Motivation und Forschungsstand 2 Experimentelle Daten und Charakterisierungsmethoden 3 Dehalogenierung von Bismutsubhalogeniden mit eindimensionaler intermetallischer Teilstruktur 4 Topochemie an Bismutsubhalogeniden mit zweidimensionaler intermetallischer Teilstruktur und deren Niedertemperaturzersetzung 5 Topochemische Austauschreaktion im dreidimensionalen intermetallischen Netzwerk von Bismutsubhalogeniden 6 Zusammenfassung und Ausblick Quellenverzeichnis Abkürzungsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Publikationen Anhang Versicherung Erklärung

Page generated in 0.0801 seconds