Spelling suggestions: "subject:"5oftware container"" "subject:"5oftware kontainer""
1 |
Container Hosts as Virtual Machines : A performance studyAspernäs, Andreas, Nensén, Mattias January 2016 (has links)
Virtualization is a technique used to abstract the operating system from the hardware. The primary gains of virtualization is increased server consolidation, leading to greater hardware utilization and infrastructure manageability. Another technology that can be used to achieve similar goals is containerization. Containerization is an operating-system level virtualization technique which allows applications to run in partial isolation on the same hardware. Containerized applications share the same Linux kernel but run in packaged containers which includes just enough binaries and libraries for the application to function. In recent years it has become more common to see hardware virtualization beneath the container host operating systems. An upcoming technology to further this development is VMware’s vSphere Integrated Containers which aims to integrate management of Linux Containers with the vSphere (a hardware virtualization platform by VMware) management interface. With these technologies as background we set out to measure the impact of hardware virtualization on Linux Container performance by running a suite of macro-benchmarks on a LAMP-application stack. We perform the macro-benchmarks on three different operating systems (CentOS, CoreOS and Photon OS) in order to see if the choice of container host affects the performance. Our results show a decrease in performance when comparing a hardware virtualized container host to a container hosts running directly on the hardware. However, the impact on containerized application performance can vary depending on the actual application, the choice of operating system and even the type of operation performed. It is therefore important to consider these three items before implementing container hosts as virtual machines.
|
2 |
Big Data Workflows: DSL-based Specification and Software Containers for Scalable ExecutionDejene Dessalk, Yared January 2020 (has links)
Big Data workflows are composed of multiple orchestration steps that perform different data analytics tasks. These tasks process heterogeneous data using various computing and storage resources. Due to the diversity of application domains, involved technologies, and complexity of data sets, the design and implementation of Big Data workflows require the collaboration of domain experts and technical experts. However, existing tools are too technical and cannot easily allow domain experts to participate in the process of defining and executing Big Data workflows. Moreover, the majority of existing tools are designed for specific applications such as bioinformatics, computational chemistry, and genomics. They are also based on specific technology stacks that do not provide flexible means of code reuse and maintenance. This thesis presents the design and implementation of a Big Data workflow solution based on the use of a domain-specific language (DSL) for hiding complex technical details, enabling domain experts to participate in the process definition of workflows. The workflow solution uses a combination of software container technologies and message-oriented middleware (MOM) to enable highly scalable workflow execution. The applicability of the solution is demonstrated by implementing a prototype based on a real-world data workflow. As per performed evaluations, the proposed workflow solution was evaluated to provide efficient workflow definition and scalable execution. Furthermore, the results of a set of experiments were presented, comparing the performance of the proposed approach with Argo Workflows, one of the most promising tools in the area of Big Data workflows. / Big Data-arbetsflöden består av flera orkestreringssteg som utför olika dataanalysuppgifter. Dessa uppgifter bearbetar heterogena data med hjälp av olika databehandlings- och lagringsresurser. På grund av stora variationen av tillämpningsområden, den involverade tekniken, och komplexiteten hos datamängderna, kräver utformning och implementering av Big Data-arbetsflöden samarbete mellan domänexperter och tekniska experter. Befintliga verktyg är dock för tekniska och vilket försvårar för domänexperter att delta i processen att definiera och genomföra Big Data-arbetsflöden. Dessutom är majoriteten av befintliga verktyg utformade för specifika tillämpningar, som bioinformatik, beräkningskemi och genomik. Verktygen är också baserade på specifika teknikstackar som inte erbjuder flexibla metoder för att kunna underhålla och återanvända kod. Denna avhandling ämnar att presentera design och implementering av en Big Data-arbetsflödeslösning som utnyttjar ett domänspecifikt språk (DSL) för att dölja komplexa tekniska detaljer, vilket gör det möjligt för domänexperter att delta i processdefinitionen av arbetsflöden. Arbetsflödeslösningen använder en kombination av mjukvaruutrustningsteknik och meddelande-orienterad mellanvara (MOM) för att möjliggöra en mer skalbar körning av arbetsflöden. Tillämpningslösningen demonstreras genom att implementera en prototyp baserad på ett verkligt dataflöde. Efter en granskning av de genomförda testerna modifierades den föreslagna arbetsflödeslösningen för att uppnå en effektiv arbetsflödesdefinition och skalbar körning. Dessutom presenteras resultaten av en uppsättning experiment där man jämför skalbarheten för det föreslagna tillvägagångssättet med Argo Workflows, ett av de mest lovande verktygen inom Big Data-arbetsflöden
|
Page generated in 0.045 seconds