• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de um software para simulação atomística de processos de microfabricação baseado em autômatos celulares. / Development of a atomistic microfabrication simulation software based on celullar automata.

Colombo, Fábio Belotti 30 May 2011 (has links)
O presente trabalho teve como foco o desenvolvimento de um software para a simulação de processos de microfabricação em substrato e de microfabricação em superfície baseado em autômatos celulares, o simMEMS. Além disso, visando a futura incorporação de ferramentas para análise das estruturas geradas pelo programa, um módulo com funcionalidades básicas para a análise mecânica de estruturas também foi desenvolvido. No que tange à microfabricação em superfície, o software desenvolvido permite simular a corrosão anisotrópica úmida do Si em KOH e deep reactive ion etching (DRIE). O simulador de corrosão úmida utiliza um autômato celular conhecido como BCA. O simulador de DRIE usa um autômato próprio. Para a simulação dos processos de microfabricação em superfície o software fornece quatro processos: deposição de filmes, corrosão de filmes, fotolitografia e planarização. Para corrosão e deposição de filmes, diversos autômatos celulares da literatura foram analisados e os resultados dessas análises é aqui apresentado. Todos os simuladores, tanto de microfabricação em superfície como em substrato, podem ser utilizados em conjunto. Isso torna o software bastante útil e capaz de simular a fabricação de um grande número de dispositivos. / The main goal of this project is the development of a software capable of simulating both surface and bulk micromachining based on a cellular automata approach. This software has been called simMEMS. In order to enable future versions of the software to also be able to analyze the structures created by the software, a module capable of running a mechanical analysis through the finite element method is also developed. simMEMS allows the user to simulate two bulk micromachining processes: wet anisotropic KOH etching and deep reactive ion etching DRIE. The wet etching simulator uses a cellular automaton known as BCA. The DRIE simulator uses an automaton developed during this project. The surface micromachining simulator allows the user to simulate four types of processes: photolithography, film deposition, film etching and substrate planarization. Several automata for the deposition and etching of films are studied and the results of this study are presented here. All processes, be they for surface or bulk micromachining, can be used on the same substrate to simulate the entire fabrication process for a large array of devices. This makes simMEMS a very useful software.
2

Desenvolvimento de um software para simulação atomística de processos de microfabricação baseado em autômatos celulares. / Development of a atomistic microfabrication simulation software based on celullar automata.

Fábio Belotti Colombo 30 May 2011 (has links)
O presente trabalho teve como foco o desenvolvimento de um software para a simulação de processos de microfabricação em substrato e de microfabricação em superfície baseado em autômatos celulares, o simMEMS. Além disso, visando a futura incorporação de ferramentas para análise das estruturas geradas pelo programa, um módulo com funcionalidades básicas para a análise mecânica de estruturas também foi desenvolvido. No que tange à microfabricação em superfície, o software desenvolvido permite simular a corrosão anisotrópica úmida do Si em KOH e deep reactive ion etching (DRIE). O simulador de corrosão úmida utiliza um autômato celular conhecido como BCA. O simulador de DRIE usa um autômato próprio. Para a simulação dos processos de microfabricação em superfície o software fornece quatro processos: deposição de filmes, corrosão de filmes, fotolitografia e planarização. Para corrosão e deposição de filmes, diversos autômatos celulares da literatura foram analisados e os resultados dessas análises é aqui apresentado. Todos os simuladores, tanto de microfabricação em superfície como em substrato, podem ser utilizados em conjunto. Isso torna o software bastante útil e capaz de simular a fabricação de um grande número de dispositivos. / The main goal of this project is the development of a software capable of simulating both surface and bulk micromachining based on a cellular automata approach. This software has been called simMEMS. In order to enable future versions of the software to also be able to analyze the structures created by the software, a module capable of running a mechanical analysis through the finite element method is also developed. simMEMS allows the user to simulate two bulk micromachining processes: wet anisotropic KOH etching and deep reactive ion etching DRIE. The wet etching simulator uses a cellular automaton known as BCA. The DRIE simulator uses an automaton developed during this project. The surface micromachining simulator allows the user to simulate four types of processes: photolithography, film deposition, film etching and substrate planarization. Several automata for the deposition and etching of films are studied and the results of this study are presented here. All processes, be they for surface or bulk micromachining, can be used on the same substrate to simulate the entire fabrication process for a large array of devices. This makes simMEMS a very useful software.
3

Desenvolvimento de um simulador da mecânica cardiovascular humana controlada pelo mecanismo reflexo baroceptor. / Development of a simulator of the human cardiovascular mechanics controlled by baroceptor reflex mechanism.

Lonardoni, José Augusto Calvo 14 September 2006 (has links)
Nos últimos anos, o ensino de fisiologia tem sido fortemente beneficiado pelo desenvolvimento de modelos matemáticos e simuladores de paciente capazes de reproduzir com segurança partes específicas ou sistemas fisiológicos completos. Estudos mostram que aulas teóricas aliadas a simulações conseguem potencializar o nível de compreensão dos conceitos envolvidos. O principal objetivo deste trabalho consiste no desenvolvimento de um simulador do sistema cardiovascular, capaz de representar de forma didática a dinâmica do ciclo cardíaco. A disponibilidade de simuladores deste tipo é reduzida, e limitada a modelos simplificados ou interfaces pouco amigáveis. De modo a conseguir maior flexibilidade nas situações simuladas e um adequado grau de proximidade com o sistema real, decidiu-se pela utilização de um modelo matemático da fisiologia cardiovascular para o cálculo das variáveis e parâmetros atuantes no plano de fundo do simulador. O desenvolvimento deste modelo constitui o segundo objetivo deste trabalho. Devido ao grau de complexidade desejado, optou-se pela utilização de um modelo existente na literatura, acrescido dos parâmetros que fossem considerados ausentes. O resultado foi um modelo com oito compartimentos vasculares e quatro compartimentos representando as câmaras do coração, todas com atividade pulsátil, controlados pelo mecanismo reflexo baroceptor, controle de curto prazo que atua na regulação da pressão arterial. O simulador (desenvolvido em Visual C# com interface em Macromedia Flash) permite a alteração individual dos parâmetros vasculares e a simulação de hemorragias, bem como a visualização de gráficos de pressão, fluxo e volume em qualquer compartimento, e a construção de alças pressão-volume para os átrios e ventrículos. Além disso, o aplicativo resultante possibilita a inclusão futura de novos recursos e ferramentas, como tutoriais e simulação de patologias. / During the last years, physiology learning has been strongly favored by the development of mathematical models and patient simulators capable of safely reproduce specific parts or complete physiological systems. Studies show that traditional classes together with simulations are able to in-crease the comprehension of concepts involved. The main objective of this work is to develop a simu-lator of the cardiovascular system capable of representing the cardiac cycle dynamics in a didactic fashion. There are just a few available simulators of this kind, and the existing ones are based on simplified models or unfriendly interfaces. In order to achieve high flexibility in simulated scenarios and an adequate level of realism, we decided to use a mathematical model of the cardiovascular physiology to calculate variables and parameters acting in the background of the application. The development of this model constitutes the second objective of the present work. Due to the desired level of complexity, we decided to use an existing model found in the literature, improved with addi-tional parameters we found necessary. The result is a model with eight vascular compartments and all four cardiac chambers, with pulsatile behavior, controlled by the baroreflex mechanism, a short term control that regulates arterial pressure. The simulator (developed in Visual C# with an interface built in Macromedia Flash) allows the user to change individual parameters and simulate blood losses, as well as visualize press, flow and volume graphs from any compartment and also pressure-volume loops from the cardiac chambers. Moreover, the resulting application is open to future inclusion of new resources and tools, such as tutorials and pathology simulation.
4

Desenvolvimento de um simulador da mecânica cardiovascular humana controlada pelo mecanismo reflexo baroceptor. / Development of a simulator of the human cardiovascular mechanics controlled by baroceptor reflex mechanism.

José Augusto Calvo Lonardoni 14 September 2006 (has links)
Nos últimos anos, o ensino de fisiologia tem sido fortemente beneficiado pelo desenvolvimento de modelos matemáticos e simuladores de paciente capazes de reproduzir com segurança partes específicas ou sistemas fisiológicos completos. Estudos mostram que aulas teóricas aliadas a simulações conseguem potencializar o nível de compreensão dos conceitos envolvidos. O principal objetivo deste trabalho consiste no desenvolvimento de um simulador do sistema cardiovascular, capaz de representar de forma didática a dinâmica do ciclo cardíaco. A disponibilidade de simuladores deste tipo é reduzida, e limitada a modelos simplificados ou interfaces pouco amigáveis. De modo a conseguir maior flexibilidade nas situações simuladas e um adequado grau de proximidade com o sistema real, decidiu-se pela utilização de um modelo matemático da fisiologia cardiovascular para o cálculo das variáveis e parâmetros atuantes no plano de fundo do simulador. O desenvolvimento deste modelo constitui o segundo objetivo deste trabalho. Devido ao grau de complexidade desejado, optou-se pela utilização de um modelo existente na literatura, acrescido dos parâmetros que fossem considerados ausentes. O resultado foi um modelo com oito compartimentos vasculares e quatro compartimentos representando as câmaras do coração, todas com atividade pulsátil, controlados pelo mecanismo reflexo baroceptor, controle de curto prazo que atua na regulação da pressão arterial. O simulador (desenvolvido em Visual C# com interface em Macromedia Flash) permite a alteração individual dos parâmetros vasculares e a simulação de hemorragias, bem como a visualização de gráficos de pressão, fluxo e volume em qualquer compartimento, e a construção de alças pressão-volume para os átrios e ventrículos. Além disso, o aplicativo resultante possibilita a inclusão futura de novos recursos e ferramentas, como tutoriais e simulação de patologias. / During the last years, physiology learning has been strongly favored by the development of mathematical models and patient simulators capable of safely reproduce specific parts or complete physiological systems. Studies show that traditional classes together with simulations are able to in-crease the comprehension of concepts involved. The main objective of this work is to develop a simu-lator of the cardiovascular system capable of representing the cardiac cycle dynamics in a didactic fashion. There are just a few available simulators of this kind, and the existing ones are based on simplified models or unfriendly interfaces. In order to achieve high flexibility in simulated scenarios and an adequate level of realism, we decided to use a mathematical model of the cardiovascular physiology to calculate variables and parameters acting in the background of the application. The development of this model constitutes the second objective of the present work. Due to the desired level of complexity, we decided to use an existing model found in the literature, improved with addi-tional parameters we found necessary. The result is a model with eight vascular compartments and all four cardiac chambers, with pulsatile behavior, controlled by the baroreflex mechanism, a short term control that regulates arterial pressure. The simulator (developed in Visual C# with an interface built in Macromedia Flash) allows the user to change individual parameters and simulate blood losses, as well as visualize press, flow and volume graphs from any compartment and also pressure-volume loops from the cardiac chambers. Moreover, the resulting application is open to future inclusion of new resources and tools, such as tutorials and pathology simulation.

Page generated in 0.0699 seconds