• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 49
  • 36
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 272
  • 272
  • 70
  • 67
  • 41
  • 36
  • 28
  • 26
  • 24
  • 24
  • 21
  • 20
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Civil Engineering

Adu-Gyamfi, Kwame 14 April 2006 (has links)
No description available.
222

Site disturbance and machine performance from tree length skidding with a rubber-tired skidder

Wimme, Kris J. January 1987 (has links)
The purpose of the study was to define the characteristics of tree-length skidding on the Lower Coastal Plain of Georgia. The objectives were: 1) to document skidder performance based on speed and tire slip, 2) to determine the effects of skidding on soil physical properties, and 3) to develop recommendations to minimize the impact on soil properties while maintaining skidder performance. A Franklin 170 grapple skidder was operated in second gear under moist (19% moisture content) and wet (31% moisture content) soil conditions using 28L-26, 67x34-25, and 73x44-32 tires. One, three, nine, and 27 passes were tested. The skidder was also operated in third gear with the 73x44-32 tires under the wet soil condition. With moist soil conditions skidder speed and tire slip were not affected by tire size or the number of skidder passes. Tire size did not influence soil properties. It was recommended that skidding be dispersed to avoid making more than nine passes over any particular soil area because the research indicated that repetitive passes resulted in a cumulative decrease in non-capillary porosity and an increase in bulk density. During wet conditions, wheel slip increased, skidder speed decreased, and rut formation increased with smaller tires, an increase in the number of skidder passes, and second gear operation. Operating the skidder in third gear with the 73x44-32 tires was beneficial to skidder performance and a reduction in rutting. Recommendations were to disperse skidding to maintain productivity and minimize rutting. / Master of Science
223

Constitutive relationships for agricultural soils

Brandon, Joseph Robert January 1987 (has links)
Undrained triaxial tests were conducted to develop the constitutive relationships for two agricultural soils, which could be used for the finite element analysis of multipass effects of vehicles on soil compaction. Sandy-clay and sandy-silt samples were loaded and unloaded three times to levels of 138 kPa to simulate three passes of an agricultural tractor. An axial loading rate of 200 mm/min was used to include the dynamic effects of rapid loading from the vehicles. An Instron Universal Testing Machine was used to provide this loading rate. During the tests, a microcomputer based data acquisition system recorded axial force and strain. The system recorded 28 values per second. Tests were conducted at four confining pressures; 17.2, 24.1, 34.4 and 41.4 kPa. Plots for deviatoric stress and axial strain were found to be bilinear. Initial and latter portions of the curve were assumed to represent the elastic and plastic deformations of the sample, respectively. Assuming an associated flow rule, an elastic-plastic constitutive model was developed based on a Mohr-Coulomb failure surface. The constitutive model developed was evaluated by simulating a triaxial test at a confining pressure of 28 kPa. Initial conditions were computed by substituting the boundary stresses into the model to determine the elastic-plastic matrix. Incremental loads were applied up to the maximum stress level. For each increment of load, the elastic-plastic matrix was updated from the previous load application. The simulated data compared fairly well with experimental results, but tended to overpredict at higher stress levels. Based on a comparison with existing elastic-plastic models, the derived model appears to be well suited for substitution into the finite element method for studying soil compaction resulting from multipass effects of tractors. / M.S.
224

The effect of machine and tire size on soil compaction due to skidding with rubber-tired skidders

Greene, Walter Dale January 1983 (has links)
M.S.
225

Plant selection for revegetation projects in Hong Kong

Wong, Siu-wai., 黃兆偉. January 1992 (has links)
published_or_final_version / Botany / Master / Master of Philosophy
226

MECHANICAL AND ELECTRON OPTICAL PROPERTIES OF A STABILIZED COLLAPSIBLE SOIL IN TUCSON, ARIZONA (MICROSCOPY, LIME-STABILIZATION).

ALFI, ABDULAZIZ ADNAN SHARIF. January 1984 (has links)
This dissertation deals with collapsing soils that are prevalent in Tucson, Arizona. Upon wetting, such soils generally swell under small loads but collapse under large loads. Since the recognition of such collapsing soils in Tucson, before about two decades, more collapsing soils were encountered due to booming construction. Therefore, the main goal of this research was to study in depth the mechanism by which these soils collapse and to investigate the effect of certain mechanical and chemical treatment on that mechanism. The research included studies of undisturbed, compacted, and lime-treated samples. Both mechanical and physicochemical tests were conducted. The mechanical tests included collapse, swell, and unconfined compressive strength. The physicochemical tests involved X-ray diffraction and scanning electron microscopy. Various sites of highly collapsing soils were classified with respect to collapse according to existing criteria and the soil of one site was selected for a detailed investigation. A predictive collapse criterion was developed and used to classify the collapse susceptibility of soils in Tucson. The microstructure of the selected soil was investigated before and after collapse. A physical model was proposed to explain the mechanism of collapse. The effects of initial water content, sequence of loading and wetting, and level of loading on the engineering behavior of the selected soil were investigated. Stabilization by compaction was studied using impact and static methods at seven points on the Standard Compaction Curve. The benefits of hydrated-lime additive and the short-term reactions of lime-treated samples were also studied. The research results indicated that the microstructure of the soil is highly porous due to many interassemblage pores. Fine clay particles were found either clothing or buttressing the larger silt particles. The collapse was due mainly to weakening or failure of the clay connectors between the larger soil particles due to swelling of the expansive clay minerals, reduction of the strength of clay connectors due to wetting, dispersion of the supporting buttresses, and reduction of capillary tension. Compaction by both impact and static methods minimized the collapse but not the swell of the soil. Lime treatment completely suppressed the soil's tendency toward collapse and swell.
227

Studies of specific gene expression of phosphate transporters in sawgrass (Cladium jamaicense crantz) and cattail (Typha domingensis pers.)

Unknown Date (has links)
In the Florida Everglades, sawgrass has been displaced by cattail, predominantly resulting from phosphate enrichment. It has been found that phosphate transporters and arbuscular mycorrhizal (AM) fungi play an important role in phosphate uptake in the plants. This study aimed to reveal the symbiosis between AM fungi and sawgrass and cattail and identify the phosphate transporters, especially AM-specific phosphate transporters in these two species. AM colonization was only found in sawgrass roots, not cattail, at low phosphate concentrations in lab and field samples by trypan blue staining. AM fungi could increase sawgrass growth and had little effect on cattail growth. Four phosphate transporters were identified in sawgrass. CjPT1, CjPT2 and CjPT3 were expressed in roots and shoots independent of AM fungi and phosphate availability, while CjPT4 appeared to be an AM regulated phosphate transporter gene and its expression was induced by AM fungi. / by Li Lin. / Thesis (M.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
228

Evaluation of low-quality recycled concrete pavement aggregates for subgrade soil stabilization

Tavakol, Masoumeh January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Mustaque A. Hossain / Stacey E. Kulesza / Recycled concrete aggregate (RCA) is the byproduct of the demolition of concrete structures and pavements. An estimated 140 million tons of concrete waste is produced annually in the United States, most of which ends up in landfills. The use of RCA to replace quarried aggregates in paving projects is one way to utilize these materials and alleviate concerns regarding this increasing waste stream. RCA usage prevents waste concrete disposal into landfills, resulting in more sustainable use of mineral aggregate sources, and may further reduce costs associated with paving projects. However, the inferior physical properties of RCA, such as the presence of recycled mortar, complicate the incorporation of RCA into new concrete mixtures. State highway agencies such as the Kansas Department of Transportation are facing further issues with RCA from D-cracked pavements, raising the question if D-cracked aggregates should be used in paving operations. No known work has evaluated the effect of RCA from D-cracked pavements in subgrade soil stabilization. This study stabilized a low-plasticity clay in Kansas using RCA and three stabilizing materials (lime, Class C fly ash, and a combination of Portland cement and fly ash). Candidate mixtures with varying proportions of chemical stabilizers and D-cracked aggregates were evaluated using the standard Proctor, unconfined compressive strength, linear shrinkage, and California Bearing Ratio tests. Microstructure characteristics of selected mixtures were explored using scanning electron microscopy (SEM) and energy dispersive X-ray tests. Laboratory test results indicated that RCA, in conjunction with all cementitious materials except lime, improved clay strength, stiffness, and shrinkage properties. SEM results indicated that RCA caused a low void space and a dense arrangement of soil particles. RCA effectively improved evaluated mixture properties when an adequate soil-RCA bond was reached using chemical agents. The long-term performance of full-depth flexible pavements with stabilized mixtures as subgrade was assessed in the AASHTOWare Pavement ME Design (commonly known as MEPDG) software. The life-cycle cost of flexible pavements with stabilized mixtures was estimated for a 40-year design period. Economic analysis results indicated that RCA was cost effective only if it was used with a combination of fly ash and Portland cement.
229

Native shrubs and trees as an integrated element in local slope upgrading

Leung, Tsz-yan, Flora, 梁芷茵 January 2014 (has links)
abstract / Civil Engineering / Doctoral / Doctor of Philosophy
230

The design and performance of a pressure chamber for testing soil nails in loose fill

Junaideen, Sainulabdeen Mohamed. January 2001 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy

Page generated in 0.135 seconds