• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 133
  • 56
  • 10
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 445
  • 445
  • 153
  • 122
  • 82
  • 78
  • 67
  • 66
  • 64
  • 52
  • 48
  • 47
  • 46
  • 45
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Water use, growth and development of sugarcane as affected by a trash mulching

Rabothata, Matome Freddy 17 August 2010 (has links)
Retention of a sugarcane mulch blanket, following green cane harvesting could increase soil water conservation, soil health (organic matter content and micro-organism activity) and soil nutrient status. However, little is known about the effect of such a mulch layer on sugarcane crop growth and development. To study the latter, an experiment was carried out in Komatipoort at the South African Sugarcane Research Institute’s Experimental Station. Row spacing arrangement was either 1.5 m or 1.2 m x 0.6 m tram rows. N14 was planted as a fast canopy growing cultivar and N26 as a slow canopy growing cultivar. Plots were either covered by a mulch layer or left as bare soil. Stalk population, stalk height and radiation interception were measured every second week. Soil temperature readings were logged hourly at a depth of 0.15 m. Preliminary results indicated that early growth and development of sugarcane was delayed under mulch treatments. Stalk length of N26 was reduced more than that of N14. Stalk population of both cultivars were significantly lower under the mulch treatment. Fractional interception of solar radiation was only 50% at 150 days after planting for the mulch treatment, compared to 70% for bare plots. Slow initial growth and delayed canopy development in mulch treatments were associated with low soil temperatures in the period leading up to full canopy closure. Soil temperature in the mulch treatments remained between 3 to 4oC lower than the bare soil treatments. Early indications are that the presence of a mulch layer may reduce early growth and development of sugarcane. Copyright / Dissertation (MInstAgrar)--University of Pretoria, 2010. / Plant Production and Soil Science / unrestricted
182

Effectiveness of various types of mulching on soil moisture and temperature regimes under rainfed soybean cultivation / マルチングがダイズ天水栽培における土壌水分・温度環境に及ぼす効果

Mohammad, Abdul KADER 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22782号 / 農博第2425号 / 新制||農||1081(附属図書館) / 学位論文||R2||N5302(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 中村 公人, 教授 星野 敏, 教授 藤原 正幸 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
183

Climate Change, Increased Wildfire Frequency, and Rodent-Exclusion Create Opportunities for Exotic Grass Invasion and Alter the Timing and Availability of Soil Water

Gilman, Joshua Clark 07 December 2020 (has links)
In deserts, global environmental changes, plant community structure, and soil water availability form a complex relationship characterized by direct and indirect relationships and feedbacks. Plant community structure is affected by the establishment and spread of invasive grasses, which form a positive feedback with wildfire. Plant community structure is also controlled by top-down trophic interactions by small-mammals and climate change, which alters the timing and amount of soil water. In deserts, soil water availability mediates the effects of global environmental changes and trophic interactions on plant community structure because it is the limiting resource for plant growth. In order to predict future changes in plant community structure, it is critical to understand how climate change, increased wildfire frequency and trophic interactions affect the establishment of invasive grasses and soil water after disturbance. Chapter 1. The objective was to understand the interactive effects of projected changes in climate, secondary wildfire, and rodent-exclusion on plant community structure. Mixed models revealed that all three factors interacted to magnify the establishment of the invasive annual grass B. tectorum in our post-fire experimental plots. In addition, structural equation models revealed that B. tectorum density was negatively correlated with the density of invasive annual forbs the following year, suggesting that B. tectorum competitively excludes other plant species. Chapter 2. The first specific aim was to understand the interactive effects of rodent-exclusion and secondary wildfire on the timing and amount of soil water availability. The second specific aim was to understand how invasive annual grass density controls soil water availability throughout the spring. Bayesian models revealed that rodent-exclusion and secondary wildfire affected soil water availability during specific windows of time throughout both experimental years. The most robust trend occurred in May of both experimental years, when rodent-exclusion, secondary fire plots had significantly less soil water availability than rodent-exclusion, single fire plots. Bayesian models also revealed there was little correlation between invasive grass density and soil water availability throughout the growing season.
184

Detekce vsakování vody do zemin injektovaných jíly metodou EIS / Detection of water infiltration into soils injected by clays using EIS method

Marek, Ondřej January 2020 (has links)
The diploma thesis deals with the study of water infiltration into soil samples with various types of clay. The soil matrix was represented by homogeneous sand; clay samples were supplied by LB Minerals, Ltd. Soil analysis with injected clays was focused on sealing ability of examined clays for possible use in construction practice for the construction of sealing objects. Electric impedance spectrometry (EIS) measuring system was used to monitor the infiltration process. The measurement was carried out by a measuring apparatus made by the solution of the international project E! 7614 of applied research in the EUREKA program within its sustainability.
185

Cropping system effects on soil water, soil temperature and dryland maize productivity

Mampana, Reedah Makgwadi January 2014 (has links)
Improved soil water conservation has become an important subject in semi-arid areas due to low and erratic rainfall which is often combined with higher temperatures to provide unsuitable conditions for successful crop productivity. Dryland agriculture remains vulnerable to yield losses in these areas. This calls for implementation of conservation agricultural practices that would improve dryland maize productivity. An on-station field trial was started in 2007 at Zeekoegat experimental farm (24 kilometers north of Pretoria), to establish the effect of different conservation agriculture practices on soil and plant properties. The experimental lay-out was a split-plot randomized complete block design, replicated three times, with each replicate split into two tillage systems (whole plots) and then each whole plot (reduced tillage (RT) and conventional tillage (CT)) was subdivided into 12 treatments (two fertilizer levels x 6 cropping patterns). The present study explored the impacts of different tillage practices, cropping patterns and fertilization levels on soil water content, soil temperature and dryland maize productivity during the 2010/11 and 2011/12 growing seasons. To improve the quality of soil water content (SWC) data, the effect of correction for concretions on soil bulk density and the relationship between volumetric soil water content (SWC) vs neutron water meter (NWM) count ratios was also investigated. Corrections for concretions on soil bulk density did not improve NWM calibrations in this study. In all seasons, significantly higher mean SWC was found under RT treatment than in CT at all depths except at 0-300 mm. For example, during the 2010/11 growing season, SWC under RT was 1.32 % and 1.10 % higher than CT for the 300 – 1350 mm and 0 – 1350 mm soil profiles, respectively. The mean weekly SWC was consistently higher for RT throughout both the growing seasons. Significantly higher SWC was also found under monoculture at all soil depths (except at 0-300 mm during 2011/12) compared to treatments under intercropping. For example, during 2010/11, at 0-300mm, SWC under maize monoculture was 1.72 % higher than under intercropping. The maximum and minimum soil temperatures were significantly higher at 100 and 400 mm soil depths under CT than under RT during 2010/11. During 2011/12, significantly higher minimum soil temperatures at 100 mm depth and lower temperature differences (maximum – minimum soil temperatures) at 400 mm depth were observed under intercropping. Despite the higher SWC and reduced soil temperature under RT, the maize seeds emergence rate was lower and plant stand was reduced. This is attributed to other factors associated with RT systems such as increased soil penetration resistance which often leads to poor root development. The lower soil temperatures under RT were generally within the range that would not be expected to inhibit growth and uptake of nutrients. Slower growth under RT resulted in lower biomass and grain yield. Plants that received high fertilizer rates grew more vigorously than plants under lower fertilizer levels when water was not a limiting factor, but produced lower grain yield due to water shortage in March, especially in 2011/12. The harvest index was therefore lower for treatments that received high fertilizer levels. Maize biomass under monoculture x low fertilizer level was significantly lower compared to other fertilizer x cropping pattern treatments. Maize plant growth under intercropping was improved throughout the seasons, which led to significantly higher grain yield than under maize monoculture. It is therefore recommended that farmers in dryland areas take the advantage of intercropping maize with legumes to obtain higher maize productivity. Further research should focus on investigating the possibility of roots restrictions occurring under RT conditions and under various environmental and soil conditions. / Dissertation (MScAgric)--University of Pretoria, 2014. / lk2014 / Plant Production and Soil Science / MScAgric / Unrestricted
186

Implications of forest structure on carbon dioxide fluxes

Tamrakar, Rijan 28 April 2020 (has links)
No description available.
187

Measurement of Soil Water Content Using Ground Penetrating Radar.

Zhang, Di January 2012 (has links)
Ground Penetrating Radar (GPR) is an effective tool to measure the geological properties. A lot of information can be interpreted from the GPR data, such as soil water content. One of the common approaches is to determine the apparent electrical permittivity from the transmission velocity of the impulse electromagnetic wave, and to use empirical relationships to estimate the soil water content. For example, Ferre equation & Topp equation are all expressing the relationship between soil water content and electrical permittivity. However, this method has some limitations; most notably the necessity to determine the velocity from a known depth to a reflecting surface. Therefore, another approach using the frequency dependent attenuation represented by a parameter called Q* was tested and studied in this thesis. The Q* method was evaluated using laboratory measurements, which consists of a series of experiments. A new empirical model was established using experiments where Q* was estimated from measurements on a soil sample with known water contents using two types of antennas (1.6 GHz & 2.3 GHz). Finally, the adaptability of Topp equation and Ferre equation were verified, and a new empirical equation was defined. What’s more, the other method using Q* was proved to be feasible.
188

Characterization of flowpaths to improve the prediction of vegetation impacts on hydrological processes in semi-arid mountainous catchments of the Cape Fold Belt

Jumbi, Faith Tatenda January 2021 (has links)
Philosophiae Doctor - PhD / Mountainous areas are important water sources in many landscapes. An understanding of how mountainous catchments function is important particularly in semi-arid areas, where water shortages are prevalent. In addition to climate and physiographic factors, the hydrological responses of mountainous catchments can be influenced by land uses and land cover types. Although the general effects of land use and land cover types on hydrological processes are known, prediction of the specific effects in a given catchment is still problematic. This study characterized flowpaths, and hydrological responses to different land cover types in a semi-arid, mountainous Kromme River catchment (Eastern Cape province of South Africa), located in the Cape Fold Mountains of the Table Mountain Group (TMG) geological region.
189

Assessing land use-land cover changes and their effects on the hydrological responses within the Nyangores River Catchment, Kenya

Ndungo, Margaret Njoki January 2021 (has links)
Philosophiae Doctor - PhD / This thesis aimed at contributing knowledge on how the widespread changes in land use/cover resulting from increasing human population and their associated activities, are influencing hydrological responses in a sub-humid catchment. The study therefore hypothesised that reduced forest cover over time in favour of agricultural activities is altering hydrological processes of the catchment which is affecting the flow characteristics in a sub-humid catchment. The sub-humid catchment selected to investigate these issues is the Nyangores River Catchment in Kenya.
190

Hydraulic properties of the vadose zone at two typical sites in the Western Cape for the assessment of groundwater vulnerabilitv to pollution

Samuels, Donovan January 2007 (has links)
>Magister Scientiae - MSc / Aquifer vulnerability assessment is increasingly becoming a very significant basis in order to fulfil the water demands in South Africa. Knowledge of soil hydraulic properties that consists of the soil water retention and hydraulic conductivity functions is a prerequisite for predicting solution transport in soils. The overall objective of the study is to develop a database of hydraulic properties for collected undisturbed samples and to test selected models by making use of this database. Studies of the vadose zone are generally restricted to the top 1.2 meters; therefore this study aims at essentially improving the lack of measurements and modelling in the vadose zone. There exist several methods to determine hydraulic properties of soil that make use of hydraulic conductivity (K) determination in the vadose zone. The most accurate estimates of hydraulic conductivity are possible through direct measurements or measurements of the water retention curve. For this study, the drilling and sampling of five boreholes (maximum depth 20 m) proceeded during March and April 2005 at two typical sites in the Western Cape, namely the Berg river site (Riebeek West) and Ithemba site (Cape Flats). In total, 76 undisturbed core samples were collected from which the detailed borehole log descriptions were made. The determination of the soil water retention curves of the collected samples was based on laboratory techniques using Eijkelkamp drying and suction equipment (sand box and clay box). When modelling groundwater vulnerability, it is essential to look at the soil water retention curves with increased importance, as they provide graphical and mathematical confirmation of porosity, preferential flows, volumetric water content and unsaturated hydraulic conductivity. Therefore, a numerical model called RETC was used to determine soil hydraulic properties. The RETC model uses equations of Van Genuchten (Van Genuchten, 1980) and Brooks-Corey (Brooks and Corey, 1966) to determine parameters for soil water retention and the methods of Mualem (1976) and Burdine (1953) to determine unsaturated hydraulic conductivity functions. Saturated hydraulic conductivity values were estimated by using RETC soil database based on textural descriptions of collected samples. Using the soil hydraulic estimates obtained from RETC, sensitivity analyses were run with a one dimensional transport model, Macro 5.0 for two sites at iThemba and in the Berg river.

Page generated in 0.0713 seconds