Spelling suggestions: "subject:"soil chemical properties"" "subject:"oil chemical properties""
11 |
Pušies žėlinių ir želdinių augimo ypatumai žemės ūkyje naudotuose smėlžemiuose / The growth peculiarities of naturally regenerated and planted Scots pine stands on agricultural ArenosolsBagdonavičius, Arvydas 16 June 2005 (has links)
The aim of the study: to compare the conditions and growth properties of naturally regenerated and planted Scots pine stands, and to evaluate the impact of Scots pine plantations on chemical parameters of Arenosols. The object of the study: the naturally regenerated and planted Scots pine stands of different age in Varėna Forest Enterprise Merkis forest district and in the experiment of Perloja Experimental Station of Lithuanian Institute of Agriculture. The research methods: the analyses of Forest Survey data, technical measurements, the chemical analyses of Arenosols samples: pH, the capability of nutrients (N, P, K, Ca, Mg) and organic carbon. The research results: the conditions and growth properties of naturally regenerated and planted Scots pine stands in Perloja experiment and in neighbour stands; the changes of chemical properties of Arenosols (pH, the capability of nutrients and organic carbon) afforested by Scots pine were estimated.
|
12 |
Uso da Krigagem Indicativa na seleção de áreas propícias ao cultivo de café em consorciação ou rotação com outras culturas / Use of Kriging Indicative in selecting areas for the cultivation of coffee in intercropping or rotation with other cropsAlmeida, Maria de Fátima Ferreira 28 February 2013 (has links)
Made available in DSpace on 2015-03-26T13:32:19Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1676755 bytes, checksum: 2df7ed933bf4edc87e49ea0558d83114 (MD5)
Previous issue date: 2013-02-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Geoestatistics stands out, mainly because it is an an interdisciplinary science that allows an exchange of information between geologists, petroleum engineers, mathematicians, statisticians and other professional groups thus enabling better interpretation of geological and environmental reality. Among the highlights Kriging techniques to Ordinary Kriging and Kriging Indicative. Where the first is a linear kriging predictor of timely considering the average unknown and incorporates in its formulation the procedure a weighted mobile, but what sets it apart is the fact that the weights are obtained taking into account the continuity represented by the semivariograma. The Indicative Kriging predictor is one that uses the technique of ordinary kriging or simple kriging of the data processed through a nonlinear function composed of binary 0 and 1. One of the great advantages of Kriging Indicative is the fact of being a nonparametric estimator that allows transform qualitative variables (presence or absence) or quantitative variables (according to a cutoff point of interest) and to estimate ranges of probability of occurrence of the variable. In agriculture, its use allows planning of soil correction of localized and identify management zones for rotation or intercropping. This paper aims to present a theoretical and practical study of the advantages and disadvantages of using the Kriging Indicative planning soil remediation technique for implantation of intercropping with banana cultivation of coffee, using data from soil chemical properties through samples collected at a farm cultivated with coffee in the city of Araponga - Zona da Mata Mineira. / A Geoestatística se destaca, principalmente por ser uma ciência interdisciplinar que permite uma troca de informações entre geólogos, engenheiros de petróleo, matemáticos, estatísticos e demais categorias profissionais possibilitando assim uma melhor interpretação da realidade geológica e ambiental. Dentre as técnicas de Krigagem destaca-se a Krigagem Ordinária e a Krigagem Indicativa. Em que a primeira é um preditor de Krigagem linear pontual que considera a média desconhecida e incorpora em sua formulação o procedimento de uma média ponderada móvel, porém o que a diferencia é o fato de que os pesos são obtidos levando em consideração a continuidade representada pelo semivariograma. A Krigagem Indicativa é um preditor que utiliza-se da técnica de Krigagem Ordinária ou de Krigagem Simples dos dados transformados por meio de uma função não linear binária composta por 0 e 1. Uma das grandes vantagens da Krigagem Indicativa reside no fato de ser um estimador não paramétrico que permite transformar variáveis qualitativas (presença ou ausência) ou variáveis quantitativas (de acordo com um ponto de corte de interesse) e estimar probabilidade de ocorrência da variável. Na agricultura, o seu uso permite fazer planejamento de correção do solo de forma localizada e identificar zonas de manejo para rotação ou consorciação de culturas. Este trabalho tem por objetivo apresentar um estudo teóricoaplicado das vantagens e desvantagens no uso da Krigagem Indicativa para o planejamento de correção do solo para implantação da técnica de consorciação de cultivo de bananeira com o cultivo de café, utilizando dados de propriedades químicas do solo por meio de amostras coletadas em uma fazenda cultivada com café no Município de Araponga- Zona da Mata Mineira.
|
13 |
Comportamento térmico de óxidos de ferro presentes em solos da savana de RoraimaJosé Lindolfo Carvalho Renda 29 October 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesse trabalho foi estudada uma seqüência de amostras de solos de acordo com os perfis; , com o objetivo de identificar através de análise difratométrica, óxidos de ferro, a partir do concentrado magnético induzido das amostras dos solos coletados em terras nas proximidades de Amajarí, Boa Vista, Bonfim e Alto Alegre em Roraima, visando fornecer subsídios para futuros projetos de uso do solo relacionados às áreas em que esses perfis estão localizados. Em uma primeira etapa as amostras foram coletadas em horizontes superficiais e subsuperficiais sendo definidos em 0,0 a 0,10 m; 0,60 a 1,00 m e 0,80 a 1,00 m e levadas ao laboratório de Manejo de Solos no Centro de Ciências Agrárias, onde procedemos ao tratamento e posterior afinamento das amostras de areia total (TFSA), e a separação do concentrado magnético. Na segunda etapa, as amostras tratadas foram levadas ao Laboratório de Propriedades Magnéticas no campus do Paricarana, onde foram feitas análises mineralógica utilizando a técnica de Difração de Raios-X / In this work was studied a soil sequence sample according to the profiles; and P_5, aiming to identify through analysis diffractogram, iron oxides, from the concentrated samples of induced magnetic soils collected on land near Amajarí, Boa Vista, Bonfim and Alto Alegre, Roraima, to provide data for future projects related to land use areas in which these profiles are located. In a first step the samples were collected in surface and subsurface horizons were defined in 0.0 to 0.10 m: 0.60 to 1.00 m and 0.80 to 1.00 I brought to the laboratory of Soil Management Center of Agricultural Sciences, where he proceeded to treatment and subsequent thinning of the sand samples total (TFSA), and the separation of the magnetic concentrate. In the second step, the treated samples were brought to the Laboratory of Magnetic Properties on the campus of Paricarana where mineralogical analysis was performed using the technique of X-ray diffraction
|
14 |
Evaluation of a Turfgrass - Soil System to Utilize and Purify Municipal Waste WaterSidle, R. C., Johnson, G. V. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / Sewage effluent for irrigation is well established. This study determines the capacity of selective turfgrass-soil systems to purify municipal sewage effluent and to measure the degree of utilization of nitrogen in the effluent by turfgrass. Chlorinated secondarily treated sewage effluent from the city of Tucson was applied to turfgrass grown on sandy loam, silt and loam, under three levels of irrigation under laboratory conditions of duplicate pots. Each pot had 2 suction probes to estimate soil moisture tensions and to allow soil water sampling. The study operated from September to March, 1972, for 30 weeks. Purification efficiency, nitrogen utilization and percent recharge were calculated. Turfgrass can be irrigated with sewage effluent at common rates without hazard of nitrogen pollution to groundwater. Purification efficiency exceeded 90 percent for all irrigation levels on sandy loam and silt. Nitrogen utilization was greater over sandy loam. Turfgrass-soil systems can utilize nitrogen and purify waste water.
|
15 |
Sulfuric Acid: Its Potential for Improving Irrigation Water QualityBohn, H. L., Westerman, R. L. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / The 2 major environmental problems of Arizona and the southwest are the alkalinization of soil and water by irrigation and air pollution from copper smelting. It is proposed that the amelioration of both problems may be solved through a common process. This is the production of sulfuric acid from sulfur dioxide, which is the main pollutant of smelter effluent gases. The conversion process is cheap and easy, and the sulfuric acid could then be added to irrigation waters to increase the solubility of CA carbonate in the soil, thereby decreasing alkalinity. Lower alkalinity results in increased soil permeability and increased water use efficiency by plants. The potential market for sulfuric acid in irrigation was calculated, on the basis of neutralizing 90% of the bicarbonate ion concentration in Colorado River water and Arizona well water, to be about 1.6 million tons annually, representing about 1/3 of the sulfur now dissipated by smelters as air pollution. This market includes both the Imperial Valley of California and the Mexicali Valley of Mexico, both of which are currently experiencing mounting salinity problems. Salinity itself is not amenable to this treatment, but the cumulative increase in NA and bicarbonate may be slowed and reversed, leading to gradual soil stabilization.
|
16 |
Effects of Fire on Water Infiltration Rates in a Ponderosa Pine StandZwolinski, Malcolm J. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / The importance of pine forest as a timber and water producing area has led to intensive management, including protection from wildfire. This has resulted in dense stand growth with increased destructive fire potential and transpirational water loss. In Arizona, as in many areas, prescribed forest burning has been used to effectively reduce these fuel hazards. Some question has arisen about the possible side effects of such treatments, particularly air pollution and reduction of infiltration and water yield. In an effort to determine the effects on infiltration, plots receiving various treatments (control, light burn, heavy burn) were fitted with fusion pyrometers before burning, to measure soil surface temperatures during burning. After burning, infiltrometers were installed. Surface temperatures did not exceed 200 degrees f. For the light burns, and ranged over 350-500 degrees f. During heavy burns. Both heavy and light burns produced highly significant decreases in infiltration capacities after burning and the surface 2 inches showed increases in soil pH, carbon and total nitrogen percentages. Infiltration capacities returned to normal after overwintering and were attributed to frost action on soil texture and porosity. The soil chemical changes decreased slowly over 2 years. Soil water repellency also increased and the significance of this is discussed.
|
17 |
Role of Composition, Structure and Physico-Chemical Environment on Stabilisation of Kuttanad SoilSuganya, K January 2013 (has links) (PDF)
Soft soil deposits of coastal regions and lowland areas pose many geotechnical problems but it is indispensable to utilize these grounds to meet the growing demand for infrastructure with ever increasing urbanization and industrial development. Soft soils are generally associated with high compressibility and low strength characteristics which augment the risk of huge settlements and foundation failure. It is essential to understand the complex behaviour of the ground consisting of soft clays as construction and maintenance of infrastructure in these areas is challenging.
Marine sediments mostly possess open microstructure irrespective of the differences in their mineral composition and sedimentation environment. Also this particular microstructure in marine sediments is generally accompanied by the presence of a great amount of organic residues and fragments of marine organisms. Formation of pyrite is also possible because of the presence of decomposable organic matter, dissolved sulfate and reactive iron minerals.
These soils due to their inherent mineralogy and microstructure have high void ratios and consequently high water holding capacity which explains the reason for their low shear strength and high compressibility characteristics. And often the formation environment is conducive for incorporation of organic content in the soft clay deposits which further aggravates the problem. A complete characterization of the soil can enhance the understanding of soil behavior and therefore can play a crucial role in suggesting suitable and sustainable ground improvement method.
Soft clay deposits of Kuttanad area in Kerala, India extending to varying depths below the ground level, present a challenge as a foundation soil due to low bearing capacity and high settlement. Geologically Kuttanad is considered as a recent sedimentary formation. In the geological past, the entire area was a part of the Arabian Sea. Presently Kuttanad area covers an area of about 1,100 km2. Many intriguing reports of distresses to structures founded on this soil are available.
An over view of specific characteristics of soft clays along with the comprehensive description of soft clays from various parts of the world is presented in the introductory Chapter. Deep soil mixing and mass stabilization methods are found to be relatively advantageous in reducing differential settlements and in achieving expeditious construction. A more detailed review of literature on Kuttanad soil problems and various ground improvement methods adopted are presented. The different ground improvement techniques attempted are soil reinforcement, stone columns, preloading etc. Soil mixing can be relatively advantageous over the other conventional ground improvement methods. Laboratory studies carried out earlier with different binders such as cement, lime and lime fly ash combinations did not exhibit appreciable improvement in soil strength. It is reasoned that the lack of understanding of the soil characteristics is responsible for the limited success of these attempts. Based on the review of literature the detailed scope of the work is presented at the end of Chapter 1.
The method of collection of the soil from Kuttanad region, methods adopted for characterization of soil, characteristics of various binders used and testing procedures adopted for assessing the geotechnical behavior with and without binders are described in Chapter 2. In order to characterize the soil for understanding its behaviour under different conditions as well as to gauge its response to different stabilizers, a detailed physico¬chemical, mineralogical, morphological and fabric studies are carried out and presented in Chapter 3. An attempt has been made to explain the role of components of soils such as organic substances, pyrite and sesquioxides for variations in its properties with change in water content. The high water holding capacity of the soil reflected in its Liquid limit along with relatively low plasticity characteristics of the soil has been explained as due to the presence of minerals such as metahalloysite and gibbsite, the flocculated fabric, porous organic matter and water filled diatom frustules (amorphous silica). Based on the study conducted on the plasticity characteristics of Kuttanad soil under different conditions of drying and treatment, it was brought about that the organic content plays a dominant role in particle cementation and aggregation causing a substantial reduction in plasticity upon drying. Further, the presence of minerals such as pyrite and iron oxides also account for the plasticity changes. The significant changes in soil properties upon drying have also been successfully explained in Chapter 4.
Attempts made to stabilize the soil using conventional chemical stabilizers are described in Chapter 5. The effect of binders on the strength improvement of soil has been explained based on the changes occurring in the composition, fabric and physico-chemical characteristics of soil upon addition of the binders. Lack of strength development in soil with lime has been attributed to the inherent composition of the soil hindering the formation of pozzolanic compounds and unfavourable modification of the fabric. On the other hand the soil responded well to cement stabilisation. The influence of various parameters such as Water/Cement (W/C) ratio, Initial water content, curing period and additive dosage on the strength development of cement treated soil has been examined. Cement improved the strength of the soil by binding the soil particles without depending on the interaction with the soil. It was observed that the role of initial water content is insignificant and the strength improved with reducing W/C ratio. The dependence of strength development with cement addition on the fabric at different W/C ratios has been assessed. Also the role of other additives such as Lime, Sand, Fly Ash, Ground granulated blast furnace slag, Silica fume and Sodium silicate to enhance the strength of cement treated soil has been analysed in Chapter 5. It was shown that only Sodium Silicate (NS) along with cement meets with good success.
The studies on the undrained shear strength and compressibility characteristics of cemented soil carried out to understand the strength and deformation behaviour of the cemented soil are presented in Chapter 6. It is clear from the compressibility characteristics of the cemented soil that there is a well defined yield stress demarcating the least compressible pre-yield zone and more compressible post yield zone. Generally the yield stress increases with reducing water cement ratio. It is interesting to note that the post yield compressibility of the cemented soil is controlled more by the fabric of soil than by cementation effect. The study on the undrained shear behavior of cemented soil revealed that the cohesion intercept and angle of internal friction increases with addition of cement. However the impact of cementation is reflected more as increase in cohesion intercept with increasing cement content. The uniqueness of failure envelope observed for the cemented soil irrespective of whether the confining stress is above or below the yield stress has been explained in detail.
A case study on the performance of embankment founded on Kuttand soil improved with Deep mixed cement columns (DMCC) has been evaluated through numerical simulations using FLAC 2D and this forms the subject matter of Chapter 7. For this work the soil properties of the Kuttanad soil determined by experimental investigations have been used. The simulation results showed that the introduction of DMCC columns improved the factor of safety against failure and reduced settlements. This study clearly endorses the analysis and the results of the test carried out on Kuttanad soil.
The final chapter summarizes the details of the work carried out which brings out the importance of characterization of the soil in terms of soil components, physico-chemical environment as well as the micro structure of the soil in predicting the behaviour of the soil in changing environment and to understand the stabilization response of the soil with different binders which intern helps to select appropriate binder and or binder combinations.
|
18 |
Moisture effects on visible near-infrared and mid-infrared soil spectra and strategies to mitigate the impact for predictive modelingSilva, Francis Hettige Chamika Anuradha 08 December 2023 (has links) (PDF)
Instrumental disparities and soil moisture are two of the key limitations in implementing spectroscopic techniques in the field. This study sought to address these challenges through two objectives. The first objective was to assess Visible-near infrared (VisNIR) and mid-infrared (MIR) spectroscopic approaches and explore the feasibility of transferring calibration models between laboratory and portable spectrometers. The second objective addressed the challenge of soil moisture and its impact on spectra. The portable spectrometers demonstrated comparable performance to their laboratory-based counterparts in both regions. Spiking with extra-weight, was the most effective calibration transfer method eliminating disparities between instruments. The samples were rewetted under nine controlled conditions for the moisture study. Results showed that spiking with extra weights significantly outperformed other techniques and model enhancement was insensitive to the moisture contents. Findings of this study will be helpful for development and deployment of in situ sensors to enable field implementation of spectroscopy.
|
Page generated in 0.1243 seconds