• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Treatment of Petroleum Contaminated Soil using Supercritical Fluid Extraction (SFE) Technology

Meskar, Mahmoud 11 April 2018 (has links)
In Canada, about 60% of contaminated sites involve petroleum hydrocarbon (PHC) contamination and most of these sites have been abandoned due to contamination. Among current technologies used for soil remediation, supercritical fluid extraction (SFE) is a relatively recent and potentially viable method. The main aim of this research was to investigate the application of SFE for removal of PHCs from contaminated soils. In the first phase, the effects of SFE operational parameters including fluid pressure, fluid temperature, time duration and mode of extraction on the removal efficiency of PHCs from a spiked sandy soil (with diesel fuel with a ratio of 5 wt%) were investigated. SFE experiments were performed at different pressures (15, 33 and 50 MPa) and temperatures (30, 75 and 120 °C). The combination of 10 min static mode followed by 10 min dynamic mode, repeated for 3 cycles (60 min in total) led to the highest PHC removal percentage. According to response surface methodology (RSM), the optimum pressure and temperature were found to be 50 MPa and 69.3 °C, respectively. According to experimental results, the optimum combination of pressure and temperature determined to be 33 MPa and 75 °C; which resulted in the extraction percentages of 99.2%, 91.7% and 86.1% for PHC F2, F3 and F4 fractions, respectively. In the second phase, the influence of several parameters including soil water content, soil pH and addition of modifier on PHCs removals from a field-contaminated sandy soil using SFE were experimentally investigated. SFE experiments were performed at 33 MPa pressure and temperatures of 45 and 75 °C. Three water content levels of 8%, 14% and 20% at two levels of pH 6.5 and 7.5 were investigated. The extraction of total petroleum hydrocarbon fractions (TPHF), the sum of F2, F3, and F4 fractions, decreased due to the increase in the water content from 8% to 20% at both pH 6.5 and 7.5. The difference of extractions of all PHC fractions at pH values of 6.5 and 7.5 were not statistically significant (at p < 0.05 confidence level) at all three water content levels and pH did not have a significant influence on the PHC removal efficiency. Addition of acetone as a modifier (33.7% TPHF removal) was more effective than hexanes (24.3% TPHF removal) to decrease the concentrations of PHCs for the field contaminated soil. In the third phase, the influence of soil texture and grain size on the extraction of PHC fractions was investigated. SFE experiments were performed at 33 MPa pressure and 75 °C temperature. Three types of soils (soil A, B and C) were spiked with diesel fuel with a ratio of 5 wt%. Soil A, B and C had different particle sizes and were categorized as sand, silt loam and clay, respectively. Soil A (sand) which had the largest particle size resulted in the highest TPHF removal percentage while soil C (clay) with the smallest particle size led to the lowest TPHF removal percentage. A higher clay content in soil C resulted in a lower extraction of PHCs. In the fourth phase, the effects of pressure and temperature on the extraction of PHC fractions from a clay soil spiked with diesel fuel with a ratio of 5 wt% were investigated. SFE experiments were performed at three pressures (15, 33 and 50 MPa) and temperatures (30, 75 and 120 °C). According to the statistical analysis including factorial design and RSM, the optimized combination of pressure and temperature was selected at 42.8 MPa and 120 °C; which resulted in the removal percentages of 74.9% and 65.6% for PHC F2 and F3 fractions, respectively. The optimum combination of pressure and temperature based on the experimental results was selected at 33 MPa and 120 °C that led to 70.3%, 58.4% and 32.6% removal of PHC F2, F3 and F4 fractions, respectively.
2

Evaluation of infiltration, run-off and sediment mobilisation using rainfall simulations in the Riebeek-Kasteel Area, Western Cape - South Africa

Joseph Twahirwa January 2010 (has links)
<p>The project was conducted on a small-scale catchment at Goedertrou in the Riebeek- Kasteel district. The focus of this study was to address some of the hydrological processes active in the research catchment, namely infiltration, run-off and sediment mobilisation on different soil types. It was done to investigate the origin of Berg River pollutants. To answer the overall question about what influence the natural salt load of the Berg River, a number of subprojects have been identified, one of which is to understand the hydrological processes in the soil mantle and vadose zone. Hence, the study aimed to answer the research questions mentioned and discussed in section 1.3 of Chapter 1. Considering the results, it could be suggested that decayed root systems from the rows of plants, soil cracks, small channels and openings created by small animals, as well as slope orientation and, therefore, soil composition, all played a major role in influencing the ability of the soil to absorb the simulated rainfall. In this study, the factors that influenced run-off are micro topography, soil moisture, root system, animal activities in soil profile, soil crack dimensions and the hydraulic conductivity. The main factors that played a major role to influence sediments mobilisation are strongly believed to be the micro topography within the ring, slope gradient and length, vegetation cover and rainfall-simulation intensity. After using different techniques, the results show that farmers must be aware that with storm rainfall, particles smaller than 65 &mu / m are subject to mobilisation. It is important to let land-users know that they need proper and appropriate methods for land-use.</p>
3

Evaluation of infiltration, run-off and sediment mobilisation using rainfall simulations in the Riebeek-Kasteel Area, Western Cape - South Africa

Joseph Twahirwa January 2010 (has links)
<p>The project was conducted on a small-scale catchment at Goedertrou in the Riebeek- Kasteel district. The focus of this study was to address some of the hydrological processes active in the research catchment, namely infiltration, run-off and sediment mobilisation on different soil types. It was done to investigate the origin of Berg River pollutants. To answer the overall question about what influence the natural salt load of the Berg River, a number of subprojects have been identified, one of which is to understand the hydrological processes in the soil mantle and vadose zone. Hence, the study aimed to answer the research questions mentioned and discussed in section 1.3 of Chapter 1. Considering the results, it could be suggested that decayed root systems from the rows of plants, soil cracks, small channels and openings created by small animals, as well as slope orientation and, therefore, soil composition, all played a major role in influencing the ability of the soil to absorb the simulated rainfall. In this study, the factors that influenced run-off are micro topography, soil moisture, root system, animal activities in soil profile, soil crack dimensions and the hydraulic conductivity. The main factors that played a major role to influence sediments mobilisation are strongly believed to be the micro topography within the ring, slope gradient and length, vegetation cover and rainfall-simulation intensity. After using different techniques, the results show that farmers must be aware that with storm rainfall, particles smaller than 65 &mu / m are subject to mobilisation. It is important to let land-users know that they need proper and appropriate methods for land-use.</p>
4

Evaluation of infiltration, run-off and sediment mobilisation using rainfall simulations in the Riebeek-Kasteel Area, Western Cape - South Africa

Twahirwa, Joseph January 2010 (has links)
Magister Scientiae - MSc / The project was conducted on a small-scale catchment at Goedertrou in the Riebeek- Kasteel district. The focus of this study was to address some of the hydrological processes active in the research catchment, namely infiltration, run-off and sediment mobilisation on different soil types. It was done to investigate the origin of Berg River pollutants. To answer the overall question about what influence the natural salt load of the Berg River, a number of subprojects have been identified, one of which is to understand the hydrological processes in the soil mantle and vadose zone. Hence, the study aimed to answer the research questions mentioned and discussed in section 1.3 of Chapter 1. Considering the results, it could be suggested that decayed root systems from the rows of plants, soil cracks, small channels and openings created by small animals, as well as slope orientation and, therefore, soil composition, all played a major role in influencing the ability of the soil to absorb the simulated rainfall. In this study, the factors that influenced run-off are micro topography, soil moisture, root system, animal activities in soil profile, soil crack dimensions and the hydraulic conductivity. The main factors that played a major role to influence sediments mobilisation are strongly believed to be the micro topography within the ring, slope gradient and length, vegetation cover and rainfall-simulation intensity. After using different techniques, the results show that farmers must be aware that with storm rainfall, particles smaller than 65 μm are subject to mobilisation. It is important to let land-users know that they need proper and appropriate methods for land-use. / South Africa

Page generated in 0.0605 seconds