Spelling suggestions: "subject:"soil temperature"" "subject:"oil temperature""
81 |
The Effects of Hay and Straw Mulches on Soil Temperatures and Moisture Values / The Effects of Hay and Straw Mulches on Soil MicroclimatesHannell, Christine Brenda 10 1900 (has links)
<p> Measurements of soil temperature and soil moisture values beneath and in close proximity to circular mulches of hay and straw were made. The experiments were conducted to determine whether sub-surface effects vary with mulch diameter, and to acquire information concerning the seasonal changes in such effects produced by a mulch of most favourable diameter. The modification of soil climate increased with a greater mulch size. A circular mulch with a diameter of 60 cms or less was considered to be of no practical value for winter protection of roots. The mulch with a 240 cms. diameter, provided some winter protection, preventing freezing of the soil, and, in summer caused considerable modification of the sub-surface climate. In the summer, soil temperatures were lowered by values of up to 5°C and 2.5°C at 5 and 100 cms. depth respectively. After a two-month period of dry weather, moisture values at 0-10 cms. depth beneath the mulch were 20% by volume, whereas, outside the mulch they were 5%. These differences decreased with increasing depth but were over 10% at 100 ems. </p> / Thesis / Master of Science (MSc)
|
82 |
The effects of landscaping mulch on invertebrate populations and soil characteristicsJordan, Kyle K. 29 September 2004 (has links)
No description available.
|
83 |
A Two Part Thesis: Diurnal Soil Temperature Effects Within the GLOBE® Program Dataset and Pharmaceutical Compounds in the Wastewater Process Stream in Northwest OhioWitter, Jason Daniel 10 June 2008 (has links)
No description available.
|
84 |
The effect of mulch on soil temperature, soil moisture, and evaporationLoupo, Marshall Wilson 23 February 2010 (has links)
Conclusions: the absorption hygrometer cannot be used satisfactorily to measure differences in evaporation from small plots. / Master of Science
|
85 |
Spatial and Temporal Trends in Greenhouse Gas Fluxes from a Temperate Floodplain along a Stream-Riparian-Upland GradientEnsor, Breanne Leigh 23 June 2016 (has links)
Increased floodplain and wetland restoration activity has raised concerns about potential impacts on the release of greenhouse gases (GHGs) to the atmosphere due to restored connectivity between aquatic and terrestrial ecosystems. Research has shown GHG fluxes from hydrologically active landscapes such as floodplains and wetlands vary spatially and temporally in response to primary controls including soil moisture, soil temperature, and available nutrients. In this study, we performed a semimonthly sampling campaign measuring GHG (CO2, CH4, and N2O) fluxes from six locations within a third-order stream floodplain. Site locations were based on dominant landscape positions and hydrologic activity along a topographic gradient including a constructed inset floodplain at the stream margin, the natural levee, an active slough, the general vegetated floodplain, a convergence zone fed by groundwater, and the upland area. Flux measurements were compared to abiotic controls on GHG production to determine the most significant factors affecting GHG flux from the floodplain. We found correlations between CO2 flux and soil temperature, organic matter content, and soil moisture, CH4 flux and pH, bulk density, inundation period length, soil temperature, and organic matter content. But minimal correlations between N2O flux and the measured variables. Spatially, our results demonstrate that constructed inset floodplains have higher global warming potential in the form of CH4 than any other site and for all other GHGs, potentially offsetting the positive benefits incurred by enhanced connectivity. However, at the reach scale, total CO2 flux from the soil remains the greater influence on climate since the area covered by these inset floodplains is comparatively much smaller than the rest of the floodplain. / Master of Science
|
86 |
Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High Elevation Southern Appalachian ForestHammer, Rachel Lynn 27 August 2019 (has links)
Forests have the ability to sequester carbon from our atmosphere. Soil respiration (Rs) plays a role in a forest's ability to do so as it is a significant source of carbon dioxide back to the atmosphere. Therefore, understanding the process of Rs under varying conditions is gaining more attention. As of now we have a relatively good understanding of Rs under managed forest ecosystems such as pine plantations. This particular study examined Rs under different overstories and understories in a high elevation Southern Appalachian forest in order to get a better understanding of Rs under a natural hardwood system. The four vegetation types under consideration were an eastern hemlock (Tsuga canadensis L. Carriere) dominated overstory, a hardwood overstory with little to no understory, a mountain laurel (Kalmia latifolia L.) dominated understory, and a cinnamon fern (Osmundastrum cinnamomeum (L.) C.Presl) dominated understory. Differing temporal variations of Rs were observed under the vegetation types. We found monthly differences in rates among vegetation type however, an overall annual difference in Rs rates between vegetation types was not observed. This simply indicates the importance of observing Rs under different time scales to get a better understanding of its variation. We also calculated vegetation indices from remotely-sensed data to explore any relationships to Rs as well as if the indices themselves could improve out model. A vegetation index is a number that is calculated for every pixel in a remotely sensed image and represents plant vigor or abundance. Few significant relationships were found between the indices and Rs. Future work may want to better understand vegetation indices' spatial extent and accuracy in order to find whether they may be beneficial in Rs estimation. Understanding the influence of varying vegetation type and soil temperature and moisture on Rs will ultimately improve our ability to predict what drives changes in carbon fluxes. / Master of Science / Forests have the ability to sequester carbon from our atmosphere. Soil respiration (Rs) plays a role in a forest’s ability to do so as it is a significant source of carbon dioxide back to the atmosphere. Therefore, understanding the process of Rs under varying conditions is gaining more attention. As of now we have a relatively good understanding of Rs under managed forest ecosystems such as pine plantations. This particular study examined Rs under different overstories and understories in a high elevation Southern Appalachian forest in order to get a better understanding of Rs under a natural hardwood system. The four vegetation types under consideration were an eastern hemlock (Tsuga canadensis L. Carriere) dominated overstory, a hardwood overstory with little to no understory, a mountain laurel (Kalmia latifolia L.) dominated understory, and a cinnamon fern (Osmundastrum cinnamomeum (L.) C.Presl) dominated understory. Differing temporal variations of Rs were observed under the vegetation types. We found monthly differences in rates among vegetation type however, an overall annual difference in Rs rates between vegetation types was not observed. This simply indicates the importance of observing Rs under different time scales to get a better understanding of its variation. We also calculated vegetation indices from remotely-sensed data to explore any relationships to Rs as well as if the indices themselves could improve out model. A vegetation index is a number that is calculated for every pixel in a remotely sensed image and represents plant vigor or abundance. Few significant relationships were found between the indices and Rs. Future work may want to better understand vegetation indices’ spatial extent and accuracy in order to find whether they may be beneficial in Rs estimation. Understanding the influence of varying vegetation type and soil temperature and moisture on Rs will ultimately improve our ability to predict what drives changes in carbon fluxes.
|
87 |
Effect of Kaolin clay, Planting Dates, and Color Mulches on Summer Tomato Production in the Eastern Shore of VirginiaGandini Taveras, Ricardo Jose 15 April 2024 (has links)
As climate change exacerbates heat stress during the summer season, it becomes increasingly critical to develop effective strategies to safeguard the productivity of tomato plants (Solanum Lycopersicon L.). This research delves into the tools and techniques aimed at enhancing the cultivation of summer tomatoes in the coastal region of Virginia. The study explores the optimization of transplant dates, the implementation of reflective mulches, and the application of kaolin clay particle films. Field trials spanning two seasons were carried out, comparing different planting dates in May, June, and July, as well as the use of reflective, black, and white plastic mulches, both with and without foliar kaolin sprays. The findings of this study underscore the impact of transplanting tomatoes in May, demonstrating a substantial increase in yields when compared to transplanting in June and July. Reflective mulches enhanced plant height and fruit production relative to the conventional black plastic mulch. The combination of kaolin clay sprays with standard black mulch, resulting in yield increases of over 35%, rivaling the outcomes achieved with reflective and white mulch treatments. The application of kaolin did not significantly affect leaf-level physiological processes. These results highlight the significant potential of strategic early planting and the adoption of emerging heat mitigation technologies, such as kaolin clay films, in sustaining and enhancing the productivity of summer tomatoes. This becomes particularly relevant as growing conditions continue to evolve due to rising temperatures and the increasing extremity of weather events resulting from climate change. / Master of Science in Life Sciences / With the challenge of hotter summers due to climate change, finding effective ways to grow tomatoes is more crucial than ever. In our two-season study in Virginia's coastal region, we experimented with various methods to improve tomato growth in these warmer conditions. What we discovered was quite promising. Planting tomatoes in early May resulted in significantly better yields than later planting times. Using reflective mulch was beneficial too; it helped the plants grow taller and produce more fruit compared to traditional black mulch. However, the most impressive result came from combining kaolin clay spray with black mulch. This approach led to a matching of the performance of black plastic plus the combination of kaolin clay against reflective and white mulches. It's interesting to note that the kaolin spray didn't alter the basic functioning of the plants at the leaf level. These findings are encouraging. They suggest that early planting and innovative approaches like kaolin clay sprays can effectively boost tomato production, even as we contend with rising temperatures and evolving climate patterns. Embracing these strategies could be key to successful tomato farming in an era of climate change
|
88 |
CFD Simulation Methodology for Ground-Coupled Ventilation SystemAlghamdi, Jamal Khaled 08 February 2009 (has links)
In the past two decades, a growing interest in alternative energy resources as a replacement to the non-renewable resources used now days. These alternatives include geothermal energy which can be used to generate power and reduce the demands on energy used to heat and cool buildings. Ground-coupled ventilation system is one of the many applications of the geothermal energy that have a lot of attention in the early 80's and 90's but all designs of the system where based on single case situations. On the other hand, computational fluid dynamics tools are used to simulate heat and fluid flow in any real life situation. They start to develop rapidly with the fast development of computers and processors. These tools provide a great opportunity to simulate and predict the outcome of most problems with minimum loss and better way to develop new designs. By using these CFD tools in GCV systems designing procedure, energy can be conserved and designs going to be improved.
The main objective of this study is to find and develop a CFD modeling strategy for GCV systems. To accomplish this objective, a case study must be selected, a proper CFD tool chosen, modeling and meshing method determined, and finally running simulations and analyzing results. All factors that affect the performance of GCV should be taken under consideration in that process such as soil, backfill, and pipes thermal properties. Multiple methods of simulation were proposed and compared to determine the best modeling approach. / Master of Science
|
89 |
Effects of rhizosphere priming and microbial functions on soil carbon turnoverLloyd, Davidson A. January 2015 (has links)
A major uncertainty in soil carbon studies is how inputs of fresh plant-derived carbon affect the turnover of existing soil organic matter (SOM) by so-called priming effects. Priming may occur directly as a result of nutrient mining by existing microbial communities, or indirectly via microbial population adjustments. Soil type and conditions may also influence the intensity and direction of priming effects. However the mechanisms are poorly understood. The objectives of this study were (1) to investigate how additions of labile C4 substrate affected SOM turnover in two contrasting unplanted C3 soils (clayey fertile from Temple Balsall, Warwickshire (TB) and sandy acid from Shuttleworth, Bedfordshire (SH) using13 C isotope shifts; (2) to investigate the influence of rhizodeposition from plant roots on SOM turnover in the same two soils planted with a C4 grass; (3) to assess an automated field system for measuring soil temperature, moisture and photosynthesis sensitivities of SOM turnover in the same two soils over diurnal to seasonal time scales. I used a combination of laboratory incubation, glasshouse and field experiments. In the soil incubation experiment, I made daily applications of either a maize root extract or sucrose to soil microcosms at rates simulating grassland rhizodeposition, and followed soil respiration (Rs) and its δ13 C over 19 days. I inferred the extent of priming from the δ13 C of Rs and the δ13 C of substrate and soil end-members. There were positive priming effects in both soils in response to the two substrates. In the SH soil there were no differences in priming effects between the substrates. However in the TB soil, sucrose produced greater priming effects than maize root extract, and priming effects with sucrose increased over time whereas with maize root extract declined after the first week. I explain these effects in terms of the greater fertility of the TB soil and resulting greater microbial nitrogen mineralization induced by priming. Because the maize root extract contained some nitrogen, over time microbial nitrogen requirements were satisfied without priming whereas with sucrose the nitrogen demand increased over time. In the glasshouse experiment, I planted C4 Kikuyu grass (Pennisetum clandestinum) in pots with the same two soils. The extent of rhizodeposition by the plants was altered by intermittently clipping the grass in half the pots (there were also unplanted controls) and priming effects were inferred from the δ13 C of Rs and the δ13 C of plant and soil end-members. Unclipped plants in both soils generated positive priming effects, while clipping reduced priming in TB soil and produced negligible PEs in SH soil. Microbial nutrient mining of SOM again explained the observed PEs in this experiment. Photosynthesis was a major driver of priming effects in the planted systems. In the third experiment, I found that the tested automated chamber system provided reliable measurements of Rs and net ecosystem exchange (NEE), and it was possible to draw relations for the dependency of Rs and NEE on key environmental drivers. Collectively, the results contribute to a better understanding of the mechanisms of priming effects and highlight possibilities for further research. The methods developed here will allow high temporal and spatial resolution measurements of Rs and NEE under field conditions, using stable isotope methods to separate fluxes into plant- and soil-derived components. Keywords: Soil respiration, soil moisture, soil temperature, Isotope ratio, maize root, flux chamber, climate change, organic matter, rhizodeposition.
|
90 |
Emissão de CO2 do solo associada à escarificação em latossolo e em argissolo / Soil CO2 emission associated with the chiseling in latossolo and in argissoloSouza, Luma Castro de [UNESP] 16 March 2017 (has links)
Submitted by LUMA CASTRO DE SOUZA null (lumasouza30@hotmail.com) on 2017-03-22T13:39:12Z
No. of bitstreams: 1
Luma_Castro_de_Souza.pdf: 1962132 bytes, checksum: d9f166261796c44cf5d9fa2c419999e6 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-22T19:35:40Z (GMT) No. of bitstreams: 1
souza_lc_dr_jabo.pdf: 1962132 bytes, checksum: d9f166261796c44cf5d9fa2c419999e6 (MD5) / Made available in DSpace on 2017-03-22T19:35:40Z (GMT). No. of bitstreams: 1
souza_lc_dr_jabo.pdf: 1962132 bytes, checksum: d9f166261796c44cf5d9fa2c419999e6 (MD5)
Previous issue date: 2017-03-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A operação de escarificação altera a estrutura do solo, afetando a dinâmica da emissão de CO2 do solo em curto período de tempo. Assim, com este estudo, objetivou-se: i - investigar a variação temporal da emissão de CO2 do solo após escarificação para o plantio da cana-de-açúcar em Latossolo e em Argissolo; ii - caracterizar a emissão de CO2, associada à distribuição de poros, em Latossolo e em Argissolo, submetidos à escarificação na linha de plantio e escarificação em área total para o plantio da cana-de-açúcar. O delineamento experimental utilizado foi em parcelas grandes pareadas. Os tratamentos utilizados consistiram na escarificação na linha de plantio (ELP) e escarificação em área total (EAT), em Latossolo e em Argissolo, localizados nos municipios de Guariba e Monte Alto, respectivamente. Para atender ao primeiro objetivo, avaliaram-se a emissão de CO2, a temperatura do solo (Tsolo) e a umidade do solo (Usolo) ao longo de 12 dias no Latossolo e em 11 dias no Argissolo, na camada de 0-0,10 m de profundidade. No Latossolo, não foi observado correlação entre a emissão de CO2, tanto com a Usolo como para Tsolo. No Argissolo, a emissão de CO2 foi correlacionada à Usolo, tanto no solo sob ELP (R2 = 0,86) quanto no solo sob EAT (R2 = 0,58). As emissões totais de CO2 no período de estudo foram maiores no Latossolo, no solo sob escarificação em linha de plantio e em área total (ELP = 1,042.6 kg CO2 ha-1 e EAT = 1,336.3 kg ha-1 de CO2), e menores no Argissolo (ELP = 659,1 kg CO2 ha-1 e EAT = 702,8 kg CO2 ha-1). No Latossolo, a emissão de CO2 foi menor no solo sob preparo com escarificação somente na linha de plantio do que no solo sob preparo com escarificação em área total. No Argissolo, a emissão de CO2 não diferiu em função do preparo. Para atender ao segundo objetivo, além de avaliar a emissão de CO2, temperatura e umidade do solo, avaliaram-se também a distribuição do tamanho de poros, o carbono orgânico associado aos minerais (COAM) e o carbono orgânico particulado (COP) na camada de 0-0,10 m de profundidade. No Latossolo, somente as propriedades: emissão de CO2, COP e classe de poro C4 (ɸ ≤ 0,04 mm) diferiram em função da escarificação. O modelo de regressão múltipla explicou 72% da variabilidade da emissão de CO2 no solo submetido a ELP para o COAM e C2 (0,05 < ɸ ≤ 0,1 mm). No Argissolo, a emissão de CO2, temperatura, umidade do solo, COAM, COP e as classes de tamanho de poros não diferiram em função das escarificações. Na regressão múltipla, a umidade do solo, C1 (ɸ ≥ 0,1 mm) e o COAM explicaram, juntas, 82% da variabilidade da emissão de CO2 no solo sob ELP. No Latossolo, a escarificação em linha de plantio e em área total afetaram diretamente a estrutura do solo, causando mudanças na porosidade e alterações na emissão de CO2 do solo. No Argissolo, a escarificação em linha de plantio e em área total não afetaram a emissão de CO2. / The chiseling operations alters the soil structure and affects the dynamics of the soil CO2 emission in a short period of time. Thus, the aim of this study was to: i- Investigate the temporal variation of CO2 emission after chiseling for the planting of sugarcane in Latossolo and Argissolo, ii – Characterize and correlation the soil CO2 emission and pore distribution in Latossolo and Argissolo with chiseling at line and total area to sugarcane planting. The experimental design used was in paired large plots. The treatments consisted of chiseling at the planting line (ELP) and chiseling at total area (EAT) in Latossolo and Argissolo, located in the municipalities of Guariba and Monte Alto, respectively. In order to attend the first aim, the CO2 emission, temperature and soil moisture were observed for 11 and 12 days, respectively at Argissolo and Latossolo, in the 0-0.10 m depth layer. The Latossolo did not show relationship among CO2 emission, Usoil and Tsoil to both chiseling. However, the Argissolo showed a significant relationship between the CO2 emission and Usoil to both chiseling, ELP (R2 = 0.86) and EAT (R2 = 0.58). The total CO2 emission was higher at Latossolo in both chiseling (ELP = 1,042.6 kg CO2 ha-1 and EAT = 1,336.3 kg ha-1 CO2) when compared with the Argissolo (ELP = 659.1 kg CO2 ha-1 and EAT = 702.8 kg CO2 ha-1). In the Latossolo, CO2 emission was lower in the soil under preparation with chiseling only in the planting line than in the soil under preparation with chiseling in the total area. In the Argissolo, the CO2 emission did not differ according to the preparation. In order to attend the second aim, the CO2 emission, temperature and soil moisture were also observed. Moreover, the distribution of pores size, organic carbon associated with minerals (COAM) and particulate organic carbon (COP) were also evaluated, in the 0-0.10 m depth layer. To Latossolo, the CO2 emission, COP and the distribution of pores size (C4; ɸ ≤ 0.04 mm) had significate difference between the chiseling. The multiple regression model was able to explain 72% of the CO2 emission variability to COAM and C2 (0.05 <ɸ ≤ 0.1 mm) at soil under ELP. To Argissolo, the CO2 emission, temperature, soil moisture, COAM, COP and distribution of pores size were not different between the chiseling. The soil moisture, C1 (ɸ ≥ 0,1 mm) and COAM were able to explain 82% of CO2 emission variability at soil under ELP. Therefore, the chiseling affected the soil porosity and soil CO2 emission directly at Latossolo. However, the chiseling did not affect the soil CO2 emission at Argissolo.
|
Page generated in 0.0746 seconds