• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 1
  • Tagged with
  • 24
  • 24
  • 15
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Particle Trajectories in Wall-Normal and Tangential Rocket Chambers

Katta, Ajay 01 August 2011 (has links)
The focus of this study is the prediction of trajectories of solid particles injected into either a cylindrically- shaped solid rocket motor (SRM) or a bidirectional vortex chamber (BV). The Lagrangian particle trajectory is assumed to be governed by drag, virtual mass, Magnus, Saffman lift, and gravity forces in a Stokes flow regime. For the conditions in a solid rocket motor, it is determined that either the drag or gravity forces will dominate depending on whether the sidewall injection velocity is high (drag) or low (gravity). Using a one-way coupling paradigm in a solid rocket motor, the effects of particle size, sidewall injection velocity, and particle-to-gas density ratio are examined. The particle size and sidewall injection velocity are found to have a greater impact on particle trajectories than the density ratio. Similarly, for conditions associated with a bidirectional vortex engine, it is determined that the drag force dominates. Using a one-way particle tracking Lagrangian model, the effects of particle size, geometric inlet parameter, particle-to-gas density ratio, and initial particle velocity are examined. All but the initial particle velocity are found to have a significant impact on particle trajectories. The proposed models can assist in reducing slag retention and identifying fuel injection configurations that will ensure proper confinement of combusting droplets to the inner vortex in solid rocket motors and bidirectional vortex engines, respectively.
12

Ballistic Design Optimization Of Three-dimensional Grains Using Genetic Algorithms

Yucel, Osman 01 September 2012 (has links) (PDF)
Within the scope of this thesis study, an optimization tool for the ballistic design of three-dimensional grains in solid propellant rocket motors is developed. The modeling of grain geometry and burnback analysis is performed analytically by using basic geometries like cylinder, cone, sphere, ellipsoid, prism and torus. For the internal ballistic analysis, a quasi-steady zero-dimensional flow solver is used. Genetic algorithms have been studied and implemented to the design process as an optimization algorithm. Lastly, the developed optimization tool is validated with the predesigned rocket motors.
13

Eulerian modeling and simulation of polydisperse moderately dense coalescing spray flows with nanometric-to-inertial droplets : application to Solid Rocket Motors / Modélisation et simulation d'écoulements diphasiques polydisperses modérément denses chargés de particules nonométriques à modérément inertielles avec coalescence : application aux moteurs à propergol solide

Doisneau, François 11 April 2013 (has links)
Dans un moteur à propergol solide, l’écoulement dépend fortement des gouttes d’alumine en suspension, dont la fraction massique est élevée. La distribution en taille des gouttes, qui s’élargit avec la coalescence, joue un rôle clef. Or résoudre des écoulements diphasiques polydisperses instationnaires avec une bonne précision sur la taille est un défi à la fois sur le plan de la modélisation et du calcul scientifique: (1) de très petites gouttes, par exemple résultant de la combustion de nanoparticules d’aluminium, subissent mouvement brownien et coalescence, (2) de petites gouttes ont leur vitesse conditionnée par leur taille de sorte qu’elles coalescent lorsqu’elles ont des tailles différentes, (3) des gouttes plus grosses peuvent se croiser par effet d’inertie et (4) toutes les gouttes interagissent de manière fortement couplée avec la phase porteuse. En complément des approches lagrangiennes, des modèles eulériens ont été développés pour décrire la phase dispersée à un coût raisonnable, et ils permettent un couplage aisé avec la phase porteuse ainsi que la parallélisation massive des codes: les approches eulériennes sont bien adaptées aux calculs industriels. Le modèle Multi-Fluide permet la description détaillée de la polydispersion, des coreélations taille/vitesse et de la coalescence, en résolvant séparément des “fluides” de gouttes triées par taille, appelés sections. Un ensemble de modèles est évalué dans cette thèse et une stratégie numérique est développée pour effectuer des calculs industriels de moteurs à propergol solide. (1) La physique des nanoparticules est évalué et incluse dans un modèle de coalescence complet. Des méthodes de moments d’ordre élevé sont ensuite développées: (2) une méthode à deux moments en taille est étendue à la coalescence pour traiter la physique de la polydispersion et les développements numériques connexes permettent d’effectuer des calculs applicatifs dans le code industriel CEDRE; (3) une méthode basée sur les moments en vitesse du deuxième ordre, un schéma de transport à l’ordre deux sur maillages structurés ainsi qu’un modèle de coalescence sont développés. Des validations académiques de la stratégie pour gouttes d’inertie modérée sont effectuées sur des écoulements complexes puis avec de la coalescence; (4) une stratégie d’intégration en temps est développée et mise en œuvre dans CEDRE pour traiter efficacement le couplage fort, dans des cas instationnaires et polydisperses incluant de très petites particules. L’ensemble des développements est soigneusement validé: soit par des formules analytiques ad hoc pour la coalescence et pour le couplage fort d’une onde acoustique; soit par des comparaisons numériques croisées avec une DPS pour la coalescence et avec des simulations lagrangiennes de cas applicatifs, coalescents et fortement couplés; soit par des résultats expérimentaux disponibles sur une configuration académique de coalescence et sur un tir de moteur à échelle réduite. La stratégie complète permet des calculs applicatifs à un coût raisonnable. En particulier, un cal- cul de moteur avec des nanoparticules permet d’évaluer la faisabilité de l’approche et d’orienter les efforts de recherche sur les propergols chargés de nanoparticules. / In solid rocket motors, the internal flow depends strongly on the alumina droplets, which have a high mass fraction. The droplet size distribution, which is wide and spreads up with coalescence, plays a key role. Solving for unsteady polydisperse two- phase flows with high accuracy on the droplet sizes is a challenge for both modeling and scientific computing: (1) very small droplets, e.g. resulting from the combustion of nanoparticles of aluminum fuel, encounter Brownian motion and coalescence, (2) small droplets have their velocity conditioned by size so they coalesce when having different sizes, (3) bigger droplets have an inertial behavior and may cross each other’s trajectory, and (4) all droplets interact in a two-way coupled manner with the carrier phase. As an alternative to Lagrangian approaches, some Eulerian models can describe the disperse phase at a moderate cost, with an easy coupling to the carrier phase and with massively parallel codes: they are well-suited for industrial computations. The Multi- Fluid model allows the detailed description of polydispersity, size/velocity correlations and coalescence by separately solving “fluids” of size-sorted droplets, the so-called sections. In the present work, we assess an ensemble of models and we develop a numerical strategy to perform industrial computations of solid rocket motor flows. (1) The physics of nanoparticles is assessed and included in a polydisperse coalescing model. High order moment methods are then developed: (2) a Two-Size moment method is ex- tended to coalescence to treat accurately the physics of polydispersity and coalescence and the related numerical developments allow to perform applicative computations in the industrial code CEDRE; (3) a second order velocity moment method is developed, together with a second order transport scheme, to evaluate a strategy for a moderately inertial disperse phase, and academic validations are performed on complex flow fields; (4) a time integration strategy is developed and implemented in CEDRE to treat efficiently two-way coupling, in unsteady polydisperse cases including very small particles. The developments are carefully validated, either through purposely derived analytical formulae (for coalescence and two-way acoustic coupling), through numerical cross-comparisons (for coalescence with a Point-Particle DNS, for applicative cases featuring coalescence and two-way coupling with a Lagrangian method), or through available experimental results (for coalescence with an academic experiment, for the overall physics with a sub-scale motor firing). The whole strategy allows to perform applicative computations in a cost effective way. In particular, a solid rocket motor with nanoparticles is computed as a feasibility case and to guide the research effort on motors with nanoparticle fuel propellants.
14

Design Optimization Of Solid Rocket Motor Grains For Internal Ballistic Performance

Hainline, Roger 01 January 2006 (has links)
The work presented in this thesis deals with the application of optimization tools to the design of solid rocket motor grains per internal ballistic requirements. Research concentrated on the development of an optimization strategy capable of efficiently and consistently optimizing virtually an unlimited range of radial burning solid rocket motor grain geometries. Optimization tools were applied to the design process of solid rocket motor grains through an optimization framework developed to interface optimization tools with the solid rocket motor design system. This was done within a programming architecture common to the grain design system, AML. This commonality in conjunction with the object-oriented dependency-tracking features of this programming architecture were used to reduce the computational time of the design optimization process. The optimization strategy developed for optimizing solid rocket motor grain geometries was called the internal ballistic optimization strategy. This strategy consists of a three stage optimization process; approximation, global optimization, and highfidelity optimization, and optimization methodologies employed include DOE, genetic algorithms, and the BFGS first-order gradient-based algorithm. This strategy was successfully applied to the design of three solid rocket motor grains of varying complexity. The contributions of this work was the development and application of an optimization strategy to the design process of solid rocket motor grains per internal ballistic requirements.
15

Theoretical Models for Wall Injected Duct Flows

Saad, Tony 01 May 2010 (has links)
This dissertation is concerned with the mathematical modeling of the flow in a porous cylinder with a focus on applications to solid rocket motors. After discussing the historical development and major contributions to the understanding of wall injected flows, we present an inviscid rotational model for solid and hybrid rockets with arbitrary headwall injection. Then, we address the problem of pressure integration and find that for a given divergence free velocity field, unless the vorticity transport equation is identically satisfied, one cannot find an analytic expression for the pressure by direct integration of the Navier-Stokes equations. This is followed by the application of a variational procedure to seek novel solutions with varying levels of kinetic energies. These are found to cover a wide spectrum of admissible motions ranging from purely irrotational to highly rotational fields. Subsequently, a second law analysis as well as an extension of Kelvin's energy theorem to open boundaries are presented to verify and corroborate the variational model. Finally, the focus is shifted to address the problem of laminar viscous flow in a porous cylinder with regressing walls. This is tackled using two different analytical techniques, namely, perturbation and decomposition. Comparisons with numerical Runge--Kutta solutions are also provided for a variety of wall Reynolds numbers and wall regression speeds.
16

Simulations et analyses de stabilité linéaire du détachement tourbillonnaire d'angle dans les moteurs à propergol solide / Simulations and linear stability analysis of corner vortex shedding in solid rocket motors

Lacassagne, Laura 21 April 2017 (has links)
Les oscillations de pression sont un enjeu majeur dans le design des moteurs à propergol solide car de faibles oscillations de pression (ODP) dans la chambre entraînent de fortes oscillations de poussée ce qui conduit à des vibrations néfastes pour les structures et les satellites embarqués. Les ODP sont encore aujourd'hui un vaste sujet de recherche et la simulation numérique est un outil indispensable dans leur analyse. De nombreux travaux ont permis de mettre en évidence divers mécanismes générateurs d'oscillations, mais la conception des nouveaux moteurs favorise la formation d'une instabilité hydrodynamique, appelée VSA et caractérisée par des détachements tourbillonnaire au niveau des discontinuités de la surface débitante. Etudiée dans les travaux sur le C1x [Vuillot 1995, Dupays 1996], il reste cependant divers points à aborder afin d'avoir une vision complète des mécanismes qui pilotent et modifient cette instabilité. Pour cela, il a été choisi dans ces travaux d'isoler le VSA dans une configuration académique et d'étudier dans un premier temps, l'impact du soufflage latéral, généré par un dégagement gazeux du à la combustion d'un bloc de propergol en aval de l'angle. Les deux approches utilisées, à savoir la simulation numérique et la stabilité linéaire, démontrent que le soufflage latéral possède un fort effet stabilisant sur le VSA. Dans un deuxième temps, l'impact de la combustion des particules d'aluminium et des résidus, présents dans un moteur à propergol solide, est analysé. Ces travaux montrent que les particules, via des mécanismes complexes, peuvent jouer à la fois un rôle stabilisant et déstabilisant sur le VSA. Pour finir, l'impact de la mise à l'échelle sur l'instabilité est étudié. Si en gaz seul, les résultats obtenus à échelle réduite sont directement transposables vers l'échelle réelle, la mise à l'échelle modifie le comportement des particules dans les structures tourbillonnaires et donc leur rôle sur l'instabilité. / Pressure oscillations (ODP) are a major issue in solid rocket motor design, as very small pressure oscillations induce strong thrust oscillations, involving vibrations detrimental to carrying load. ODP are still a vast and intense domain of research and the improvement of rocket motors mainly resorts to advanced numerical simulations. Extensive research have enabled to characterize several sources of instabilities, but new motor design promotes one hydrodynamic instability, called VSA and characterized by vortex shedding at geometry angles. VSA has be studied in the C1x configuration [Vuillot 1995, Dupays 1996] but several points still need to be studied in order to have a complete view of the phenomena driving and impacting this instability in a solid rocket motor flow. In this work, the VSA is isolated in an academic configuration and, in a first part, the impact of lateral blowing is studied. This blowing, never analysed so far, is due to burnt gases coming from the combustion of propellant block after the angle. This study has been performed following two approaches, numerical simulations and linear stability analysis. Both demonstrate the strong stabilizing effect of the lateral blowing. In a second part, the impact of aluminium particles combustion including the presence of residual particles, found in solid rocker motors, is analysed. This work shows that due to complex interaction mechanisms, particles can have a stabilizing or a destabilizing impact on the instability. Finally, the scaling impact is studied with and without particles. In purely gaseous configuration, the results obtained at reduced scale can be used directly at real scale as all the characteristics of the instability are preserved. However, with particles, the scaling modifies the particles behaviour and then the particles impact on the VSA.
17

Instabilités thermoacoustiques dans les moteurs à propergol solide / Thermo-acoustic instabilities in solid rocket motors

Genot, Aurélien 21 June 2019 (has links)
Dans un moteur à propergol solide, des instabilités thermoacoustiques auto-entretenues, induites par le couplage de la dynamique de la combustion des gouttes d’aluminium, libérées par la combustion du propergol, avec le champ acoustique peuvent induire des oscillations de pression.L’analyse menée tout au long de ce manuscrit repose sur un ensemble d’hypothèses simplificatrices: (i) la réponse de la combustion de gouttes d’aluminium aux perturbations acoustiques est contrôlée par l’écoulement local autour de la goutte, (ii) le processus de combustion peut être supposé quasi stationnaire pour la gamme de fréquences et les amplitudes acoustiques étudiées et (iii) la combustion de l’aluminium est brusquement arrêtée lorsque le diamètre de la goutte d’aluminium diminue en dessous d’un diamètre résiduel.L’instabilité thermoacoustique est étudiée au moyen de simulations numériques de l’écoulement dans un moteur générique et d’analyses théoriques. Le diamètre résiduel des gouttes d’aluminium après la combustion, l’amplitude de la perturbation acoustique et la durée de la combustion des gouttes d’aluminium figurent parmi les principaux paramètres modifiant l’instabilité. En outre, trois comportements de réponse de la combustion à l’acoustique sont identifiés : un comportement linéaire pour les faibles niveaux de pression acoustique puis un comportement quadratique (faiblement non-linéaire) et enfin un comportement fortement non-linéaire quand l’amplitude des oscillations augmente.Ensuite, deux aspects importants de la réponse des gouttes d’aluminium sont identifiés. Ils sont associés aux oscillations de la durée du temps de combustion des gouttes, identifiables à la frontière du nuage de gouttes, et aux fluctuations du taux d’évaporation contrôlées par la convection de l’écoulement gazeux autour de chaque goutte. Tenant compte de ces dynamiques,des expressions analytiques sont obtenues permettant de reproduire avec précision les résultats numériques des simulations de l’écoulement. Quatre nombres sans dimension qui régissent la dynamique de ces instabilités sont également identifiés. Inspiré de l’analyse théorique précédente, un modèle numérique d’ordre réduit faiblement non linéaire est finalement développé pour prédire des cycles limites. / In a solid rocket motor, self-sustained thermo-acoustic instabilities, induced by the coupling of the combustion dynamics of aluminum droplets released by the burning propellant with the acoustic field can induce pressure oscillations.The analysis conducted throughout this manuscript relies thus on a set of simplifying hypothesis by assuming (i) that the response of the combustion of aluminum droplets to acoustic perturbations is controlled by the oscillating drag exerted by the local flow around the droplet, (ii) that this unsteady combustion process can be assumed quasi-steady for the range of frequencies and acoustic amplitudes studied and (iii) that aluminum combustion is abruptly quenched when the aluminum droplet diameter falls below a residual diameter.The thermo-acoustic instability is studied first by numerical flow simulations in a generic solid rocket motor and theoretical analyses. The post-combustion residual diameter of the aluminum particles, the amplitude of acoustic perturbation and the lifetime of the burning aluminum droplets are among the main parameters altering the instability. Also, three combustion response behaviors to acoustics are identified : a linear behavior for small acoustic pressure levels followed by a quadratic behavior then a highly non-linear behavior when the pressure amplitude increases in the motor chamber. Moreover, two important features of the response of aluminum droplets are identified. They are associated to oscillations of the droplet lifetime at the boundary of the droplet cloud and to fluctuations of the droplet evaporation rate, controlled by convection. The dynamics of the droplets highly depends on gas and droplet velocity fields and on droplet diameter. Taking these features into account, yields analytical expressions that allow to reproduce with accuracy the numerical results from the flow simulations. Four dimension less numbers are then identified. They govern the dynamics of these instabilities. Inspired from the previous theoretical analysis, a weakly nonlinear low-order numerical model is finally developed to predict limit cycles.
18

Modélisation des oscillations de pression auto-entretenues induites par des tourbillons dans les moteurs à propergol solide / Low order modeling of vortex driven self-sustained pressure pulsations in solid rocket motors

Hirschberg, Lionel 16 January 2019 (has links)
Les moteurs de fusées à ergols solides (SRMs) sont sensibles aux instabilités hydrodynamiques qui peuvent déclencher des oscillations auto-entretenues de pression de grandes amplitudes lorsqu’elles se couplent à l’un des modes acoustiques du système. Le moteur de ces instabilités est la formation de structures tourbillonnaires cohérentes synchronisées par des ondes acoustiques longitudinales. Pour certaines conditions de fonctionnement, les ondes acoustiques générées par l’interaction de ces tourbillons avec la tuyère amorcée du moteur renforcent l’oscillation acoustique. L’objectif des travaux menés dans cette thèse est de déterminer l’amplitude et la fréquence des oscillations de pression au cycle limite des instabilités. Celui-ci est atteint par saturation non linéaire des sources, qui est la conséquence de la formation de grosses structures cohérentes. Dans ce cas l’interaction tourbillon tuyère devient insensible à l’amplitude de l’onde du mode acoustique établi dans le foyer. Dans ces conditions, on peut se concentrer sur l’interaction d’un tourbillon avec la tuyère dans le mécanisme de production sonore. En considérant un écoulement incompressible et l’absence de frottement, un premier modèle analytique est développé permettant de déterminer la production sonore d’un tourbillon ingéré par une tuyère bidimensionnelle plane, lorsque le tourbillon est traité comme une ligne vorticité. Des expériences précédentes indiquent que le volume de la cavité autour de l’entrée d’une tuyère intégrée a une grande influence sur l’amplitude des oscillations de pression dans les grands SRMs. On montre que ceci est dû au champ de vitesse acoustique induit par la compressibilité du gaz dans la cavité qui produit une fluctuation de vitesse transverse à la trajectoire du tourbillon. Une seconde alternative au modèle analytique incompressible est développée en considérant toujours l’absence de frottement, mais un modèle compressible de l’interaction tourbillon-tuyère. Celui-ci repose sur un code aéroacoustique pour les écoulements internes basé sur les équations d’Euler (EIA) qui est utilisé ici pour la simulation de l’interaction tourbillon-tuyère. Une étude systématique de cette interaction a été menée pour une tuyère amorcée. Les résultats ont permis de proposer un modèle de sources localisées pour des ondes planes basé sur une analyse théorique des lois d’échelles de ces phénomènes. Les simulations de ces interactions tourbillons-tuyères ont été réalisées pour différents types de tuyères. En employant un bilan énergétique, un modèle avec un seul paramètre de contrôle est formulé, qui permet de reproduire qualitativement le comportement du cycle limite d’oscillations de pression observées dans des expériences réalisées avec des gaz froids décrites dans la littérature. Finalement le modèle Euler est utilisé pour comparer la production de son par interaction tourbillon-tuyère avec celle due à l’ingestion d’une onde d’entropie, appelée aussi tache d’entropie. Contrairement au cas des tourbillons, le bruit produit par ingestion de taches d’entropie n’est pas sensible au volume de la cavité d’une tuyère intégrée. Ces résultats indiquent que le bruit produit par les tourbillons est dominant dans le cas des SRMs étudiés. L’ensemble de ces travaux permet d’améliorer la compréhension des phénomènes d’interaction entre des non-homogénéités de l’écoulement et la tuyère. Elle permet surtout de déterminer quels sont les facteurs de l’écoulement et les éléments géométriques importants qui pilotent le niveau sonore produit par ces interactions. Les modèles développés dans ces travaux, avec divers degrés d’approximation et de complexité permettent d’enrichir la gamme des outils de conception des SRMs. / Solid Rocket Motors (SRMs) can display self-sustained acoustic oscillations driven by coupling between hydrodynamic instabilities of the internal flow and longitudinal acoustic standing waves. The hydrodynamic instabilities are triggered by the acoustic standing wave and results in the formation of coherent vortical structures. For nominal ranges of flow conditions the sound waves generated by the interaction between these vortices and the choked nozzle at the end of the combustion chamber reinforces the acoustic oscillation. Most available literature on this subject focuses on the threshold of instability using a linear model. The focus of this work is on the prediction of the limit-cycle amplitude. The limit-cycle is reached due to nonlinear saturation of the source, as a consequence of the formation of large coherent vortical structures. In this case the vortex-nozzle interaction becomes insensitive to the amplitude of the acoustic standing wave. Hence, one can focus on the sound generation of a vortex with the nozzle. Sound production can be predicted from an analytical two-dimensional planar incompressible frictionless model using the so-called Vortex Sound Theory. In this model the vorticity is assumed to be concentrated in a line vortex. Experiments indicate that the volume of cavities around so-called “integrated nozzles” have a large influence on the pulsation amplitude for large SRMs. This is due to the acoustical field normal to the vortex trajectory, induced by the compressibility of the gas in this cavity. As an alternative to the incompressible analytical model a compressible frictionless model with an internal Euler Aeroacoustic (EIA) flow solver is used for simulations of vortex-nozzle interaction. A dedicated numerical simulation study focusing on elementary processes such as vortex-nozzle and entropy spot-nozzle interaction allows a systematic variation of relevant parameters and yields insight which would be difficult by means of limit cycle studies of the full engine. A systematic study of the vortex-nozzle interaction in the case of a choked nozzle has been undertaken. The results are summarized by using a lumped element model for plane wave propagation, which is based on theoretical scaling laws. From EIA simulations it appears that sound due to vortex-nozzle interaction is mainly generated during the approach phase and that for the relevant parameter range there is no impingement of the vortex on the nozzle wall as has been suggested in the literature. Using an energy balance approach, a single fit-parameter model is formulated which qualitatively predicts limit-cycle observations in cold gas-scale experiments reported in the literature. Finally the Euler model is used to compare the sound production by vortex-nozzle interaction with that due to the ingestion of an entropy non-uniformity also called entropy spot. In addition to insight, this study provides a systematic procedure to develop a lumped element model for the sound source due to non-homogeneous flow-nozzle interactions in SRMs. Such lumped models based on experimental data or a limited number of flow simulations can be used to ease the design of SRMs.
19

Computational Studies On Certain Problems Of Combustion Instability In Solid Propellants

Anil Kumar, K R 11 1900 (has links)
This thesis presents the results and analyses of computational studies on certain problems of combustion instability in solid propellants. Specifically, effects of relaxing certain assumptions made in previous models of unsteady burning of solid propellants are investigated. Knowledge of unsteady burning of solid propellants is essential in studying the phenomenon of combustion instability in solid propellant rocket motors. In Chapter 1, an introduction to different types of unsteady combustion investigated in this thesis, such as 1) intrinsic instability, 2) pressure-driven dynamic burning, 3) extinction by depressurization, and 4) L* -instability, is given. Also, a review of previous experimental and theoretical studies of these phenomena is presented. From this review it is concluded that all the previous studies, which investigated the unsteady combustion of solid propellants, made one or more of the following assumptions: 1) quasi-steady gas-phase (QSG), 2) quasi-steady condensed phase reaction zone (QSC), 3) small perturbations, and 4) unity Lewis number. These assumptions limit the validity of the results obtained with such models to: 1) relatively low frequencies (< 1 kHz) of pressure oscillations and 2) small deviations in pressure from its steady state or mean values. The objectives of the present thesis are formulated based on the above conclusions. These are: 1) to develop a nonlinear numerical model of unsteady solid propellant combustion, 2) to relax the assumptions of QSG and QSC, 3) to study the consequent effects on the intrinsic instability and pressure-driven dynamic burning, and 4) to investigate the L* -instability in solid propellant rocket motors. In Chapter 2, a nonlinear numerical model, which relaxes the QSG and QSC assumptions, is set up. The transformation and nondimensionalization of the governing equations are presented. The numerical technique based on the method of operator-splitting, used to solve the governing equations is described. In Chapter 3, the effect of relaxing the QSG assumption on the intrinsic instability is investigated. The stable and unstable solutions are obtained for parameters corresponding to a typical composite propellant. The stability boundary, in terms of the nondimensional parameters identified by Denison and Baum (1961), is predicted using the present model. This is compared with the stability boundary obtained by previous linear stability theories, based on activation energy asymptotics in the gas-phase, which employed QSC and/or QSG assumptions. It is found that in the limit of large activation energy and low frequencies, present result approaches the previous theoretical results. This serves as a validation of the present method of solution. It is confirmed that relaxing the QSG assumption widens the stable region. However, it is found that a distributed reaction in the gas-phase destabilizes the burning. The effect of non-unity Lewis number on the stability boundary is also investigated. It is found that at parametric values corresponding to low pressures and large flame stand-off distances, small amplitude, high frequency (at frequencies near the characteristic frequency of the gas-phase) oscillations in burning rate appear when the Lewis number is greater than one. In Chapter 4, the effect of relaxing the QSG assumption is further investigated with respect to the pressure-driven dynamic burning. Comparison of the pressure-driven frequency response function, Rp, obtained with the present model, both in the QSG and non-QSG framework, with those obtained with previous linear stability theories invoking QSG and QSC assumptions are made. As the frequency of pressure oscillations approaches zero, |RP| predicted using present models approached the value obtained by previous theoretical studies. Also, it is confirmed that the effect of relaxing QSG is to decrease the |Rp| at frequencies near the first resonant frequency. Moreover, relaxing QSG assumption produces a second resonant peak in |Rp| at a frequency near the characteristic frequency of the gas-phase. Further, Rp calculated using the present model is compared with that obtained by a previous linear theory which relaxed the QSG assumption. The two models predicted the same resonant frequencies in the limit of small amplitudes of pressure oscillations. Finally, it is found that the effect of large amplitude of pressure oscillations is to introduce higher harmonics in the burning rate and to reduce the mean burning rate. In Chapter 5, first the present non-QSC model is validated by comparing its results with that of a previous non-QSC model for radiation-driven burning. The model is further validated for steady burning results by comparing with experimental data for a double base propellant (DBP). Then, the effect of relaxing the QSC assumption on steady state solution is investigated. It is found that, even in the presence of a strong gas-phase heat feedback, QSC assumption is valid for moderately large values of condensed phase Zel'dovich number, as far as steady state solution is concerned. However, for pressure-driven dynamic burning, relaxing the QSC assumption is found to increase |RP| at all frequencies. The error due to QSC assumption is found to become significant, either when |Rp| is large or as the driving frequency approaches the characteristic frequency of the condensed phase reaction zone. The predicted real part of the response function is quantitatively compared with experimental data for DBP. The comparison seems to be better with a value of condensed phase activation energy higher than that suggested by Zenin (1992). In Chapter 6, burning rate transients for a DBP during exponential depressurization are computed using non-QSG and non-QSC models. Salient features of extinction and combustion recovery are predicted. The predicted critical initial depressurization rate, (dp/dt)i, is found to decrease markedly when the QSC assumption is relaxed. The effect of initial pressure level on critical (dp/dt)i is studied. It is found that the critical (dp/dt)i decreases with the initial pressure. Also, the overshoot of burning rate during combustion recovery is found to be relatively large with low initial pressures. However as the initial pressure approached the final pressure, the reduction in initial pressure causes a large increase in the critical (dp/dt)i. No extinction is found to occur when the initial pressure is very close to the final pressure. In Chapter 7, a numerical model is developed to simulate the L* -instability in solid propellant motors. This model includes a) the propellant burning model that takes into account nonlinear pressure oscillations and that takes into account an unsteady gas- and condensed phase, and b) a combustor model that allows pressure and temperature oscillations of finite amplitude. Various regimes of L* -burning of a motor, with a typical composite propellant, namely 1) steady burning, 2) oscillatory burning leading to steady state, 3) oscillatory burning leading to extinction, 4) reignition and 5) chuffing are predicted. The predicted dependence of frequency of L* -oscillations on mean pressure is compared with one set of available experimental data. It is found that proper modeling of the radiation heat flux from the chamber walls to the burning surface may be important to predict the re-ignition. In Chapter 8, the main conclusions of the present study are summarized. Certain suggestions for possible future studies to enhance the understanding of dynamic combustion of solid propellants are also given.
20

Modélisation et simulation de l’écoulement diphasique dans les moteurs-fusées à propergol solide par des approches eulériennes polydispersées en taille et en vitesse / Eulerian modeling and simulation of two-phase flows in solid rocket motors taking into account size polydispersion and droplet trajectory crossing

Dupif, Valentin 22 June 2018 (has links)
Les gouttes d’oxyde d’aluminium présentes en masse dans l’écoulement interne des moteurs-fusées à propergol solide ont tendance à influerde façon importante sur l’écoulement et sur le fonctionnement du moteur quel que soit le régime. L’objectif de la thèse est d’améliorerles modèles diphasiques eulériens présents dans le code de calcul semi-industriel pour l’énergétique de l’ONERA, CEDRE, en y incluant lapossibilité d’une dispersion locale des particules en vitesse en plus de la dispersion en taille déjà présente dans le code, tout en gardant unestructure mathématique bien posée du système d’équations à résoudre. Cette nouvelle caractéristique rend le modèle capable de traiter lescroisements de trajectoires anisotropes, principale difficulté des modèles eulériens classiques pour les gouttes d’inertie modérément grande.En plus de la conception et de l’analyse détaillée d’une classe de modèles basés sur des méthodes de moments, le travail se concentre sur larésolution des systèmes d’équations obtenus en configurations industrielles. Pour cela, de nouvelles classes de schémas précis et réalisables pourle transport des particules dans l’espace physique et l’espace des phases sont développées. Ces schémas assurent la robustesse de la simulationmalgré différentes singularités (dont des chocs, -chocs, zones de pression nulle et zones de vide...) tout en gardant une convergence d’ordredeux pour les solutions régulières. Ces développements sont conduits en deux et trois dimensions, en plus d’un référentiel bidimensionnelaxisymétrique, dans le cadre de maillages non structurés.La capacité des schémas numériques à maintenir un niveau de précision élevé tout en restant robuste dans toutes les conditions est un pointclé pour les simulations industrielles de l’écoulement interne des moteurs à propergol solide. Pour illustrer cela, le code de recherche SIERRA,originellement conçu durant les année 90 pour les problématiques d’instabilités de fonctionnement en propulsion solide, a été réécrit afin depouvoir comparer deux générations de modèles et de méthodes numériques et servir de banc d’essais avant une intégration dans CEDRE. Lesrésultats obtenus confirment l’efficacité de la stratégie numérique choisie ainsi que le besoin d’introduire, pour les simulations axisymétriques,une condition à la limite spécifique, développée dans le cadre de cette thèse. En particulier, les effets à la fois du modèle et de la méthodenumérique dans le contexte d’une simulation de l’écoulement interne instationnaire dans les moteurs-fusées à propergol solide sont détaillés.Par cette approche, les liens entre des aspects fondamentaux de modélisation et de schémas numériques ainsi que leurs conséquences pour lesapplications sont mis en avant. / The massive amount of aluminum oxide particles carried in the internal flow of solid rocket motors significantly influences their behavior.The objective of this PhD thesis is to improve the two-phase flow Eulerian models available in the semi-industrial CFD code for energeticsCEDRE at ONERA by introducing the possibility of a local velocity dispersion in addition to the size dispersion already taken into accountin the code, while keeping the well-posed characteristics of the system of equations. Such a new feature enables the model to treat anisotropicparticle trajectory crossings, which is a key issue of Eulerian models for droplets of moderately large inertia.In addition to the design and detailed analysis of a class of models based on moment methods, the conducted work focuses on the resolution ofthe system of equations for industrial configurations. To do so, a new class of accurate and realizable numerical schemes for the transport ofthe particles in both the physical and the phase space is proposed. It ensures the robustness of the simulation despite the presence of varioussingularities (including shocks, -shocks, zero pressure area and vacuum...), while keeping a second order accuracy for regular solutions. Thesedevelopments are conducted in two and three dimensions, including the two dimensional axisymmetric framework, in the context of generalunstructured meshes.The ability of the numerical schemes to maintain a high level of accuracy in any condition is a key aspect in an industrial simulation of theinternal flow of solid rocket motors. In order to assess this, the in-house code SIERRA, originally designed at ONERA in the 90’s for solidrocket simulation purpose, has been rewritten, restructured and augmented in order to compare two generations of models and numericalschemes, to provide a basis for the integration of the features developed in CEDRE. The obtained results assess the efficiency of the chosennumerical strategy and confirm the need to introduce a new specific boundary condition in the context of axisymmetric simulations. Inparticular, it is shown that the model and numerical scheme can have an impact in the context of the simulation of the internal flow ofsolid rocket motors and their instabilities. Through our approach, the shed light on the links between fundamental aspects of modeling andnumerical schemes and their consequences on the applications.

Page generated in 0.0292 seconds