• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 117
  • 51
  • 39
  • 30
  • 10
  • 6
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 629
  • 629
  • 261
  • 179
  • 163
  • 163
  • 125
  • 115
  • 113
  • 111
  • 109
  • 108
  • 102
  • 92
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Strategies to Improve Solid Phase Microextraction Sensitivity: Temperature, Geometry and Sorbent Effects

Jiang, Ruifen January 2013 (has links)
Solid phase microextraction (SPME) has been widely used in a variety of sample matrices and proven to be a simple, fast and solvent-free sample preparation technique. A challenging limitation in the further development of this technique has been the insufficient sensitivity for some trace applications. This limitation lies mainly in the small volume of the extraction phase. According to the fundamentals of SPME, different strategies can be employed to achieve higher sensitivity for SPME sampling. These include cooling down the extraction phase, preparing a high capacity particle-loading extraction phase, as well as using a thin film with high surface area-to-volume ratio as the extraction phase. In this thesis, four sampling approaches were developed for high sensitivity sampling by employing cold fiber, thin film, cooling membrane and particle loading membrane as sampling tools. These proposed methods were applied to liquid, solid and particularly trace gas analysis. First, a fully automated cold fiber device that improves the sensitivity of the technique by cooling down the extraction phase was developed. This device was coupled to a GERSTEL® MultiPurpose Sampler (MPS 2), and applied to the analysis of volatiles and semi-volatiles in aqueous and solid matrices. The proposed device was thoroughly evaluated for its extraction performance, robustness, reproducibility and reliability by gas chromatograph/mass spectrometer (GC/MS). The evaluation of the automated cold fiber device was carried out using a group of compounds characterized by different volatilities and polarities. Extraction efficiency and analytical figures of merit were compared to commercial SPME fibers. In the analysis of aqueous standard samples, the automated cold fiber device showed a significant improvement in extraction efficiency when compared to commercial polydimethylsiloxane (PDMS) and non-cooled cold fiber. This was achieved due to the low temperature of the coating during sampling. Results from the cold fiber and commercial divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber analysis of solid sample matrices were obtained and compared. Results demonstrated that the temperature gap between the sample matrix and the coating significantly improved the distribution coefficient, and consequently, the extraction amount. The newly automated cold fiber device presents a platform for headspace analysis of volatiles and semi-volatiles for a large number of samples, with improved throughput and sensitivity. Thin film microextraction (TFME) improves the sensitivity by employing a membrane with a high surface area-to-volume ratio as the extraction phase. In Chapter 3, a simple non-invasive sample preparation method using TFME is proposed for sampling volatile skin emissions. Evaluation experiments were conducted to test the reproducibility of the sampling device, the effect of the membrane size, and the method for storage. Results supported the reproducibility of multi-membrane sampling, and demonstrated that sampling efficiency can be improved using a larger membrane. However, ability to control the sampling environment and time was proved to be critical in order to obtain reliable information; the in vivo skin emission sampling was also influenced by skin metabolism and environmental conditions. Next, the method of storage was fully investigated for the membrane device before and after sampling. This investigation of storage permitted the sampling and instrument analysis to be conducted at different locations. Finally, the developed skin sampling device was applied in the identification of dietary biomarkers after garlic and alcohol ingestion. In this experiment, the previously reported potential biomarkers dimethyl sulphone, allyl methyl sulfide and allyl mercaptan were detected after garlic intake, and ethanol was detected after the ingestion of alcohol. Experiments were also conducted in the analysis of volatile organic compounds (VOCs) from upper back, forearm and back thigh of the body on the same individual. Results showed that 27 compounds can be detected from all of the 3 locations. However, these compounds were quantitatively different. In addition, sampling of the upper back, where the density of sebaceous glands is relatively high, detected more compounds than the other regions. In Chapter 4, a novel sample preparation method that combines the advantages of cold fiber and thin film was developed to achieve the high extraction efficiency necessary for high sensitivity gas sampling. A cooling sampling device was developed for the thin film microextraction. Method development for this sampling approach included evaluation of membrane temperature effect, membrane size effect, air flow rate and humidity effect. Results showed that high sensitivity for equilibrium sampling can be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity was obtained by thin membranes with a large surface area and/or high sampling flow rate. In addition, humidity evaluations showed no significant effect on extraction efficiency due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) and reproducibility of the developed cooling membrane gas sampling method were evaluated. LOD with a membrane radius of 1 cm at room temperature sampling were 9.24 ng/L, 0.12 ng/L, 0.10 ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility had a relative standard deviation (RSD%) lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooling membrane device could serve as a powerful tool for gas in trace analysis. In Chapter 5, a particle-loading membrane was developed to combine advantages of high distribution coefficient and high surface area geometry, and applied in trace gas sampling. Bar coating, a simple and easy preparation method was applied in the preparation of the DVB/PDMS membrane. Membrane morphology, particle ratio, membrane size and extraction efficiency were fully evaluated for the prepared membrane. Results show that the DVB particles are uniformly distributed in the PDMS base. The addition of a DVB particle enhanced the stiffness of the membrane to some extent, and improved the extraction capacity of the membrane. Extraction capacity for benzene was enhanced by a factor of 100 when the membrane DVB particle ratio increased from 0% to 30%. Additionally, the prepared DVB/PDMS membrane provided higher extraction efficiency than pure PDMS membrane and DVB/PDMS fiber, especially for highly volatile and polar compounds. The high reproducibility of the prepared DVB/PDMS membrane in air sampling demonstrated the advantage of the bar coating preparation method, and also permitted quantitative analysis. Last, the prepared particle-loading membrane was applied to semi-quantitative and quantitative analysis of indoor and outdoor air, respectively. Both the equilibrium calibration method and diffusion-based calibration method were proposed for the quantitative analysis. Results showed that the high capacity particle-loading membrane can be used for monitoring trace analytes such as perfume components and air pollutants.
272

Strategies to Improve Solid Phase Microextraction Sensitivity: Temperature, Geometry and Sorbent Effects

Jiang, Ruifen January 2013 (has links)
Solid phase microextraction (SPME) has been widely used in a variety of sample matrices and proven to be a simple, fast and solvent-free sample preparation technique. A challenging limitation in the further development of this technique has been the insufficient sensitivity for some trace applications. This limitation lies mainly in the small volume of the extraction phase. According to the fundamentals of SPME, different strategies can be employed to achieve higher sensitivity for SPME sampling. These include cooling down the extraction phase, preparing a high capacity particle-loading extraction phase, as well as using a thin film with high surface area-to-volume ratio as the extraction phase. In this thesis, four sampling approaches were developed for high sensitivity sampling by employing cold fiber, thin film, cooling membrane and particle loading membrane as sampling tools. These proposed methods were applied to liquid, solid and particularly trace gas analysis. First, a fully automated cold fiber device that improves the sensitivity of the technique by cooling down the extraction phase was developed. This device was coupled to a GERSTEL® MultiPurpose Sampler (MPS 2), and applied to the analysis of volatiles and semi-volatiles in aqueous and solid matrices. The proposed device was thoroughly evaluated for its extraction performance, robustness, reproducibility and reliability by gas chromatograph/mass spectrometer (GC/MS). The evaluation of the automated cold fiber device was carried out using a group of compounds characterized by different volatilities and polarities. Extraction efficiency and analytical figures of merit were compared to commercial SPME fibers. In the analysis of aqueous standard samples, the automated cold fiber device showed a significant improvement in extraction efficiency when compared to commercial polydimethylsiloxane (PDMS) and non-cooled cold fiber. This was achieved due to the low temperature of the coating during sampling. Results from the cold fiber and commercial divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber analysis of solid sample matrices were obtained and compared. Results demonstrated that the temperature gap between the sample matrix and the coating significantly improved the distribution coefficient, and consequently, the extraction amount. The newly automated cold fiber device presents a platform for headspace analysis of volatiles and semi-volatiles for a large number of samples, with improved throughput and sensitivity. Thin film microextraction (TFME) improves the sensitivity by employing a membrane with a high surface area-to-volume ratio as the extraction phase. In Chapter 3, a simple non-invasive sample preparation method using TFME is proposed for sampling volatile skin emissions. Evaluation experiments were conducted to test the reproducibility of the sampling device, the effect of the membrane size, and the method for storage. Results supported the reproducibility of multi-membrane sampling, and demonstrated that sampling efficiency can be improved using a larger membrane. However, ability to control the sampling environment and time was proved to be critical in order to obtain reliable information; the in vivo skin emission sampling was also influenced by skin metabolism and environmental conditions. Next, the method of storage was fully investigated for the membrane device before and after sampling. This investigation of storage permitted the sampling and instrument analysis to be conducted at different locations. Finally, the developed skin sampling device was applied in the identification of dietary biomarkers after garlic and alcohol ingestion. In this experiment, the previously reported potential biomarkers dimethyl sulphone, allyl methyl sulfide and allyl mercaptan were detected after garlic intake, and ethanol was detected after the ingestion of alcohol. Experiments were also conducted in the analysis of volatile organic compounds (VOCs) from upper back, forearm and back thigh of the body on the same individual. Results showed that 27 compounds can be detected from all of the 3 locations. However, these compounds were quantitatively different. In addition, sampling of the upper back, where the density of sebaceous glands is relatively high, detected more compounds than the other regions. In Chapter 4, a novel sample preparation method that combines the advantages of cold fiber and thin film was developed to achieve the high extraction efficiency necessary for high sensitivity gas sampling. A cooling sampling device was developed for the thin film microextraction. Method development for this sampling approach included evaluation of membrane temperature effect, membrane size effect, air flow rate and humidity effect. Results showed that high sensitivity for equilibrium sampling can be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity was obtained by thin membranes with a large surface area and/or high sampling flow rate. In addition, humidity evaluations showed no significant effect on extraction efficiency due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) and reproducibility of the developed cooling membrane gas sampling method were evaluated. LOD with a membrane radius of 1 cm at room temperature sampling were 9.24 ng/L, 0.12 ng/L, 0.10 ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility had a relative standard deviation (RSD%) lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooling membrane device could serve as a powerful tool for gas in trace analysis. In Chapter 5, a particle-loading membrane was developed to combine advantages of high distribution coefficient and high surface area geometry, and applied in trace gas sampling. Bar coating, a simple and easy preparation method was applied in the preparation of the DVB/PDMS membrane. Membrane morphology, particle ratio, membrane size and extraction efficiency were fully evaluated for the prepared membrane. Results show that the DVB particles are uniformly distributed in the PDMS base. The addition of a DVB particle enhanced the stiffness of the membrane to some extent, and improved the extraction capacity of the membrane. Extraction capacity for benzene was enhanced by a factor of 100 when the membrane DVB particle ratio increased from 0% to 30%. Additionally, the prepared DVB/PDMS membrane provided higher extraction efficiency than pure PDMS membrane and DVB/PDMS fiber, especially for highly volatile and polar compounds. The high reproducibility of the prepared DVB/PDMS membrane in air sampling demonstrated the advantage of the bar coating preparation method, and also permitted quantitative analysis. Last, the prepared particle-loading membrane was applied to semi-quantitative and quantitative analysis of indoor and outdoor air, respectively. Both the equilibrium calibration method and diffusion-based calibration method were proposed for the quantitative analysis. Results showed that the high capacity particle-loading membrane can be used for monitoring trace analytes such as perfume components and air pollutants.
273

DNA Hybridization on Walls of Electrokinetically Controlled Microfluidic Channels

Chen, Lu 16 March 2011 (has links)
The use of microfluidic tools to develop two novel approaches to surface-based oligonucleotide hybridization assays has been explored. In one of these approaches, immobilized oligonucleotide probes on a glass surface of a microfluidic channel were able to quantitatively hybridize with oligonucleotide targets that were electrokinetically injected into the channel. Quantitative oligonucleotide analysis was achieved in seconds, with nM detection limits and a dynamic range of 3 orders of magnitude. Hybridization was detected by the use of fluorescently labeled target. The fluorescence intensity profile evolved as a gradient that could be related to concentration, and was a function of many factors including hybridization reaction rate, convective delivery speed, target concentration and target diffusion coefficient. It was possible to acquire kinetic information from the static fluorescence intensity profile to distinguish target concentration, and the length and base-pair mismatches of target sequences. Numerical simulations were conducted for the system, and fit well with the experimental data. In a second approach, a solid-phase nucleic acid assay was developed using immobilized Quantum Dot (QD) bioprobes. Hybridization was used to immobilize QDs that had been coated with oligonucleotides having two different sequences. The hybridization of one oligonucleotide sequence conjugated to a QD (a linker sequence) with a complementary sequence that was covalently attached to a glass substrate of a microfluidic channel was shown to be an immobilization strategy that offered flexibility in assay design, with intrinsic potential for quantitative replacement of the sensing chemistry by control of stringency. A second oligonucleotide sequence conjugated to the immobilized QDs provided for the selective detection of target nucleic acids. The microfluidic environment offered the ability to manipulate flow conditions for control of stringency and increasing the speed of analytical signal by introduction of convective delivery of target sequences to the immobilized QDs. This work introduces a stable and adaptable immobilization strategy that facilitates solid-phase QD-bioprobe assays in microfluidic platforms.
274

Capturing molecules with templated materials: analysis and rational design of molecularly imprinted polymers

Wei, Shuting 09 July 2007 (has links)
Advantages such as chemical, mechanical and thermal stability together with high selectivity for the templated analyte render molecularly imprinted polymers MIPs interesting alternatives to routinely applied separation materials or antibodies. Nevertheless, many factors such as the choice of functional monomer, cross-linker, and porogenic solvent, as well as the ratio between template, functional monomer, and cross-linker will affect the resulting imprinting efficiency and polymer particle size and morphology. The research described in this thesis contributes to the development of new synthetic strategies for the generation of imprinted micro- and nanospheres for 17beta-estradiol (E2) focusing on accurate control and optimization of the governing parameters for precipitation polymerization, including the polymerization temperature and the cross-linker, yielding a one-step synthetic approach with superior control on the bead diameter, shape, monodispersity and imprinting efficiency. Thus synthesized imprinting materials for E2 were successfully applied in HPLC separation, solid phase extraction and radioligand binding assays. As the optimization of imprinted materials is based on fundamental understanding of the binding site properties, the investigations is aimed at establishing a more rational basis for further tailoring imprinted materials to the desired analytical application. The relationships between the particle porosity and rebinding properties were detailed, providing useful guidelines for controlling the particle properties for the desired application including, SPE pre-concentration, HPLC separations, and biomimetic binding assays. Furthermore, analytical techniques (1H-NMR and IR, etc.) and molecular modeling were combined in this thesis to facilitate advanced understanding of the fundamental principles governing selective recognition of molecularly imprinted polymers at a molecular level. The molecular interactions involved in the templating process of molecularly imprinted polymers based on the self-assembly approach were simulated in molecular dynamic simulation model by building a modeling system include all the imprinting components with correct ratio, which has never been reported before. Molecular level interactions such as hydrogen bonding, π-π stacking interactions as well as the free energy governing complex formation of E2 with the functional monomers 4-vinylpyridine (4VP) and methacrylic acid (MAA), and the cross-linker divinylbenzene (DVB) were discussed.
275

Volatile Sulphur Compounds in UHT Milk

Al-Attabi, Zahir Unknown Date (has links)
Heating milk to high temperatures such as 140 ºC, as used in ultra high temperature (UHT) processing, causes physical and chemical changes in the milk. The production of a cooked flavour is a major change which reduces consumer acceptance of the UHT milk. It has been correlated with the formation of volatile sulphur compounds (VSCs) that result from milk proteins, principally the whey proteins β-lactoglobulin, containing the the sulphur amino acids cystine, cysteine and methionine. The VSCs in milk, whose concentrations are in the parts per billion to parts per million range, are highly reactive, easily oxidised, and sensitive to heat during thermal processing and analysis; this makes them a challenge to analyse. A sensitive method based on gas chromatography with pulsed flame photometric detection coupled with headspace sampling by solid phase microextraction (SPME/GC/PFPD) was developed to detect these compounds in commercial UHT milk and to investigate their production and disappearance during heating and storage. The SPME/GC/PFPD procedure was optimised using different extraction time (15 min, 30 min, & 60 min) – temperature (30 oC, 45 oC & 60 oC) combinations with CAR/PDMS fibre to obtain maximum sensitivity. A short extraction time (15 min) at low temperature (30 oC) was chosen to provide high sensitivity for detecting all VSCs in UHT milk without introducing artefactual VSCs. The extraction method and GC run time (16 min) make this method simple and fast. Nine VSCs were detected in commercial indirectly processed UHT milk, skim and whole. These are hydrogen sulphide (H2S), carbonyl sulphide (COS), methanethiol (MeSH), dimethyl sulphide (DMS), carbon disulphide (CS2), dimethyl disulphide (DMDS), dimethyl sulphoxide (DMSO), dimethyl sulphone (Me2SO2) and dimethyl trisulphide (DMTS). An additional unknown compound was detected but could not be identified by GC/MS because its concentration was below the detection limit of the MS detector. The concentrations of H2S, DMS and DMTS were higher than their threshold values indicating their importance in milk flavour, especially cooked flavour. Several attempts have been made to reduce the cooked flavour in UHT milk. In the current research, the use of hydrogen peroxide (H2O2) to oxidise the VSCs and thereby reduce cooked flavour was investigated. H2O2 is used as a milk preservative and is generally recognised as safe (GRAS) in USA. Several concentrations of H2O2 (0.001%, 0.005%, 0.01%, 0.02% & 0.03%) were added to milk to assess its effects on VSCs and on whey proteins denaturation in UHT milk. H2O2 effectively reduced the concentration of all VSCs, except DMDS which was increased, presumably by oxidation of MeSH. H2S was completely oxidised or reduced below its threshold value. Low concentrations of H2O2 (0.001% & 0.005%) had no effect on, or decreased, the extent of denaturation of β-lactoglobulin when added after or before processing, respectively. Some UHT plants use severe heating conditions, leading to high levels of denaturation of whey proteins, particularly β-Lg, the main source of the VSCs in milk. Correlations between heat severity, β-Lg denaturation and individual VSC generation were investigated in milk batch-heated at 80 oC and 90 oC, and UHT milk processed at 120-150 oC. In accordance with previous reports, β-Lg was more heat-sensitive than α-La. Only five VSCs were detected. The concentrations of H2S and MeSH correlated well with denaturation of β-Lg and α-La. DMS concentration correlated well with β-Lg in UHT milk but not in the batch-heated milk. CS2 did not show a good correlation with heat intensity and appeared to plateau out after a certain level of heating. Conversely, COS and MeSH seemed to require a certain minimum amount of heat before generation commenced; this corresponded to denaturation of β-Lg above 49% and 89% respectively at 80 oC. The higher concentrations of DMS and H2S in UHT milk compared with batch-heated samples having similar degrees of denaturation suggested other possible sources for their production and the importance of the heat severity in generating them. For example, at high heat intensity, S-methylmethionine and thiamine could be sources of DMS and H2S respectively. Furthermore, in whole milk as used in this work, milk fat globule membrane proteins are another source of VSCs. The outcome of this study will help UHT manufacturers to understand the production and disappearance of the VSCs in commercial UHT milk and how to adjust the processing conditions to avoid generation of cooked flavour. Additionally, the promising results of using low concentrations of H2O2 to oxidise the VSCs will provide the industry with another means of reducing cooked flavour. Before H2O2 use is implemented in UHT processing, future studies are required to evaluate all of its effects, including sporicidal effects. Overall, this study makes a contribution to finding a solution to the cooked flavour problem in UHT milk, thereby increasing market share of this milk in countries such as Australia, the UK and North America where cooked flavour is the main barrier to its consumer acceptance.
276

Développement de nouvelles méthodes séparatives compatibles avec une détection par spectrométrie de masse et par électrochimie pour l'analyse de traces de catécholamines et molécules apparentées / Development of new chromatographic methods compatibles with mass spectrometric detection and electrochemical detection for catecholamines and related molecules

Chirita, Raluca-Ioana 27 November 2009 (has links)
Les catécholamines et les indolamines font partie de la famille des neurotransmetteurs. Un déséquilibre dans leur concentration peut être associé à différentes maladies telles les maladies de Parkinson et Alzheimer, la dépression ou la schizophrénie. C’est pourquoi le développement de méthodes de dosage spécifiques et très sensibles du fait de leurs très faibles teneurs dans les fluides biologiques est nécessaire. Dans un premier temps nous avons développé une méthode chromatographique en appariement d’ions (IP-LC) utilisant des colonnes C18 de nouvelle génération (monolithique et « fused core ») et l’acide nonafluoropentanoïque, comme agent d’appariement d’ions volatil. Cette méthode est compatible avec une détection SM en mode d’ionisation positive. Dans un deuxième temps, différents systèmes en mode HILIC ont été évalués. Le choix raisonné de la phase stationnaire offrant la meilleure séparation du mélange de catécholamines a pu être réalisé après avoir testé l’influence sur la séparation des différents groupements fonctionnels disponibles : groupement soit neutre (greffage diol, amide, ou cyano), soit positivement chargé (greffage amino ou triazole) soit négativement chargé (silice vierge avec particules totalement poreuses ou partiellement poreuses « fused core ») ou zwitterionique (greffage sulfobetaïne). La méthode HILIC présente l’avantage d’être compatible aussi bien avec une détection SM en mode d’ionisation positive que négative. Les deux méthodes (IP-LC et HILIC) ont été comparées en termes de résolution, efficacité et limites de détection (LOD), linéarité et répétabilité. Les LODs obtenues sont comprises entre 1 et 100 ng.mL-1. Pour pouvoir doser des teneurs plus faibles, une méthode de pré-concentration de l’échantillon a été développée en associant 2 supports différents (Oasis HLB et PGC). La méthode optimisée SPE-CPL-MS/MS a été enfin appliquée à un extrait de cerveau de mouton. / As neurotransmitters, catecholamines play an important role in the control and regulation of numerous brain functions. They are also believed to be implicated in different neurodegenerative disorders. First an ion pairing chromatography method using nonafluoropentanoic acid as volatile ion paring agent was developed on the new generation of C18 columns (monolith and fused core). This method is compatible with MS detection in positive ionization mode. Secondly an HILIC method was optimized using different commercially available HILIC supports, they can be classified as follows: neutral (diol, amide, and cyano bounded), positively charged (amino, triazole bounded), negatively charged (bare silica as wholly porous particles or fused core particles columns) and zwitterionic (sulfobetaine bounded). Our studies lead us to a better understanding of the HILIC retention mechanism and also to the selection of the most appropriated column for catecholamine analysis. Only the HILIC system was compatible with both positive and negative ionization modes. The two chromatographic systems were then compared in terms of resolution, efficiency, detection and quantification limits (LOD/LOQ), calibration linearity and repeatability. The LODs obtained were in the range of 1-100 ng.mL-1. A simple pre-concentration method using Oasis HLB and PGC solid phase extraction cartridges has been optimized in order to enhance the LODs. Finally the optimized SPE-LC-MS/MS method has been applied to the identification of these compounds present in brain extracts.
277

Modélisation physique de la réalisation des jonctions FDSOI pour le noeud 20nm et au-delà / Physical modeling of junction processing in FDSOI devices for 20 nm node and below

Sklénard, Benoît 10 April 2014 (has links)
La réduction des dimensions des dispositifs CMOS (Complementary Metal Oxide Semiconductor) implique de nombreux défis dans la formation de jonctions. La recroissance par épitaxie en phase solide (SPER) à des températures inférieures à 600 °C est une technique attrayante dans la mesure où elle permet de réaliser des jonctions abruptes avec une forte concentration de dopants actifs et qui sont nécessaires pour les nœuds avancés tels que le 20 nm et au-delà. Dans ce manuscrit, on présente un modèle atomistique basé sur la méthode Monte-Carlo cinétique sur réseau (LKMC) afin de simuler la cinétique de SPER dans le silicium. Le modèle s'appuie sur la description phénoménologique des mécanismes microscopiques de recristallisation proposé par Drosd et Washburn dans [J. Appl. Phys. 53, 397 (1982)] en distinguant des événements {100}, {110} et {111} selon le plan local de recroissance et a été implémenté dans le simulateur MMonCa [Appl. Phys. Lett. 98, 233109 (2011)]. Il s'agit de la même base que le modèle de Martín-Bragado et Moroz [Appl. Phys. Lett. 95, 123123 (2009)] qui a été implémenté dans le simulateur commercial Synopsys SProcess KMC. Néanmoins, dans notre travail, la formation de macles lors des évènements {111} a été introduite ce qui a nécessité des changements importants dans l'implémentation. Le modèle a été calibré sur des résultats expérimentaux et permet de prédire l'anisotropie et la dépendance en température. En particulier, il a été utilisé afin d'expliquer la formation de zones défectueuses dans les dispositifs FDSOI à l'issue de la SPER à une température réduite. Le modèle LKMC a, en outre, été étendu dans le but d'inclure l'influence d'une contrainte non-hydrostatique et la recroissance accélérée du fait de la présence de dopants actifs. Les effets d'une contrainte non-hydrostatique ont été introduits en utilisant le concept de tenseur d'activation proposé par Aziz, Sabin et Lu dans [Phys. Rev. B 44, 9812 (1991)] et seulement quatre paramètres indépendants sont nécessaires. La présence de dopants ionisés cause une accélération de la vitesse de recroissance qui est attribué à un effet lié à la position du niveau de Fermi à l'interface amorphe/cristal. Un solveur 3D auto-cohérent de l'équation de Poisson avec le modèle de Thomas-Fermi a été implémenté et couplé avec le modèle LKMC afin de prendre en compte la courbure des bandes à l'interface amorphe/cristal. La correction phénoménologique de décalage du niveau de Fermi généralisé (GFLS) proposée par Williams et Elliman dans [Phys. Rev. Lett. 51, 1069 (1983)] a été utilisée pour modifier les fréquences de recristallisation des évènements microscopiques. Des simulations de la vitesse de recroissance en fonction de la température pour différentes concentrations de dopants ont montré un bon accord avec les données expérimentales. En résumé, dans ce manuscrit, un modèle unifié de SPER basé sur une approche LKMC est présentée. Il prend en compte l'influence de différents paramètres sur la cinétique de recroissance et ayant un intérêt technologique tels que la température, l'orientation cristalline, la contrainte et la présence de dopants. Le modèle est, en soi, tridimensionnel et permet donc d'explorer les phénomènes de recroissance impliquant plusieurs fronts de recristallisation et qui ont lieu lors du procédé de fabrication de dispositifs électroniques réels. / Complementary metal oxide semiconductor (CMOS) device scaling involves many technologicalchallenges in terms of junction formation. Solid phase epitaxial regrowth (SPER) at temperaturesbelow 600 ˝C is an attractive technique since it enables to form highly–activated andabrupt junctions that are required for advanced technology nodes such as 20 nm and beyond.In this manuscript, we present a comprehensive atomistic model relying on the lattice KineticMonte Carlo (LKMC) method to simulate SPER kinetics in silicon. The model is based onthe phenomenological description of the microscopic recrystallization mechanisms proposedby Drosd and Washburn in [J. Appl. Phys. 53, 397 (1982)] by distinguishing among {100},{110} and {111} events depending on the local regrowth plane and has been implemented inthe MMonCa simulator [Appl. Phys. Lett. 98, 233109 (2011)]. This is the same basis than theatomistic model of Martín–Bragado and Moroz proposed in [Appl. Phys. Lett. 95, 123123(2009)] and available in the Synopsys SProcess KMC commercial tool. Nevertheless, in ourwork the formation of twin configurations during {111} events has been incorporated givingrise to significant changes in the implementation. The model has been calibrated on single–directional SPER experiments and allows predicting the regrowth anisotropy and temperaturedependence. In particular, it has been used to explain the formation of defective regions inFDSOI devices annealed with a low processing temperature. In this work, the LKMC modelhas also been extended in order to include the influence of non–hystrostatic stress and dopant–enhanced regrowth that are technologically relevant. Non–hydrostatic stress effects have beenincorporated using the concept of activation strain tensor introduced by Aziz, Sabin and Luin [Phys. Rev. B 44, 9812 (1991)] and only four independent parameters are required. Thepresence of ionized dopants has been shown to cause an enhancement of the regrowth velocitywhich has been attributed to a Fermi level effect. A three–dimensional Thomas–Fermi–Poisson solver has been implemented and coupled with the LKMC model allowing to takeinto account the band bending at amorphous/crystalline interface. The phenomenological generalizedFermi level shifting (GFLS) correction proposed by Williams and Elliman in [Phys.Rev. Lett. 51, 1069 (1983)] has been used to modify the microscopic recrystallization rates.Simulations of the regrowth velocity as a function of temperature for different dopant concentrationshave shown a reasonable agreement with experimental data. In summary, in thismanuscript a unified SPER model relying on the LKMC approach is presented. It takes intoaccount various technologically relevant parameters influencing the regrowth kinetics such astemperature, crystalline orientation, stress and dopants. The model is per se three-dimensionaland can therefore be used to explore multi–directional regrowth phenomena that take place inreal electronic devices.
278

Evaluation of the volatile organic profile profile generated from thermally degraded tissue: analysis by solid phase microextraction and gas chromatography/mass spectrometry

Tincher, Heidi 12 March 2016 (has links)
Ample research has been published regarding the effects of environmental decomposition on volatile organic profiles of tissue, however literature concerning the volatile organic profiles of thermally degraded tissue is limited in quantity and scope. The purpose of this study was to investigate the effects of temperature on the headspace volatile organic compounds produced by muscle, subcutaneous fat, skin, and punch biopsy samples. The majority of the compounds for each tissue type were alcohols and aldehydes. Compounds were extracted using solid phase microextraction and identified using gas chromatography/mass spectrometry. Compounds such as nonanal, 1-octen-3-ol, octanal, and hexanal were present in the volatile organic compound profile for many tissue types at a majority of the temperatures, particularly from 150°C to 300°C. 2-pentylfuran was the most abundant component in the profile of skin samples from 150°C to 300°C. The profile of fresh subcutaneous fat had numerous branched alkanes, while thermally degraded subcutaneous fat profiles were comprised mostly of aldehydes and alcohols. The profile of muscle was primarily composed of alcohols and aldehydes up to 300°C, whereas the most abundant compound at 350°C was trimethylpyrazine. There were consistent compounds identified among each tissue group. The abundance patterns of alcohols and aldehydes over increasing temperatures differed for each tissue type. Analysis of the data gathered in this study indicates that muscle, subcutaneous fat, and skin contribute characteristic compounds, such as alcohols and aldehydes, to the profile of the punch biopsy samples. The findings further suggest that temperature affects the volatile organic profile of tissue in terms of the compounds identified and the abundance trends of certain compounds.
279

Caracterização qualitativa do perfil volátil de vinhos espumantes brasileiros elaborados com um assemblage inovador submetidos a diferentes condições de segunda fermentação

Palma, Aline Schwertner January 2014 (has links)
Os vinhos espumantes elaborados pelo método Tradicional são elaborados, comumente, a partir das uvas Chardonnay, Pinot Noir, Chadonnay, Riesling, Viognier, Trebbiano e Pinot Noir e os componentes voláteis destes espumantes já têm merecido a atenção de diversos estudos científicos. Entretanto, vinhos espumantes produzidos a partir de outros varietais de uvas ainda não foram alvo de pesquisas científicas. A segunda fermentação ocorre dentro da garrafa e acaba por conferir uma maior complexidade aromática ao espumante produzido pelo método Tradicional, devido ao contato do vinho com as leveduras em meio redutor, por um determinado período de tempo. Isto acontece devido aos produtos secundários do metabolismo das leveduras, durante a conversão de açúcares em etanol e dióxido de carbono. Esta conversão depende dos nutrientes adicionados, chamados adjuvantes de fermentação, bem como da espécie de levedura utilizada, visto que cada levedura possui um metabolismo diferente para a utilização dos nutrientes e açúcares presentes no vinho base. Assim, objetivou-se, neste trabalho, caracterizar os componentes voláteis de vinhos espumantes de uma vinícola gaúcha, que emprega um assemblage inovador, empregando uvas Chadonnay, Riesling, Viognier, Trebbiano e Pinot Noir. Do assemblage deste vinho base utilizou-se, para segunda fermentação, duas espécies de leveduras comerciais: Saccharomyces cerevisiae e Saccharomyces bayanus. Para cada levedura utilizada na fermentação do vinho base, oito diferentes adjuvantes de fermentação foram empregados. A determinação dos compostos voláteis se deu através da técnica de microextração em fase sólida no modo headspace (HS-SPME) e cromatografia gasosa acoplada a detector de espectrometria demassa quadrupolar (GC/MS). Ao total, 25 compostos foram tentativamente identificados nos vinhos em estudo, sendo os compostos majoritários citados a seguir, com sua possível contribuição para o aroma destes vinhos: octanoato de etila (aroma de fruta), álcool isoamílico (aroma de banana), ácido octanoico (aroma de pimentão) e álcool feniletílico (aroma floral). O fenetil fenilacetato, um dos compostos minoritários tentativamente identificado em alguns dos vinhos, até então não reportado em vinho espumante, é associado a aroma frutado. Não foi possível distinguir subgrupos entre os 16 vinhos em estudo, provenientes de diferentes condições na segunda fermentação, quando as áreas cromatográficas dos compostos voláteis destes 16 vinhos foram submetidas a análise de cluster. Isto implica em que, nas condições experimentais deste estudo, não foi possível distinguir os voláteis dos vinhos fermentados (2ª fermentação) com S. cereviseae e os fermentados com S. bayanus. A mesma análise de cluster mostrou a subdivisão dos compostos voláteis dos 16 vinhos em dois grupos, os quais se distinguiram, provavelmente, devido aos diferentes adjuvantes nutricionais empregados: fosfato e Thiazote. Desta forma, através de análise qualitativa por HS-SPME-GC/MS, foi possível verificar a homogeneidade do perfil volátil dos 16 vinhos espumantes, obtidos a partir de diferentes adjuvantes de fermentação e duas espécies distintas de leveduras Saccharomyces sp, além de comparar os componentes voláteis presentes nestes espumantes com aqueles reportados na literatura para outros vinhos espumantes. / Sparkling wines elaborated by Traditional Method are usually produced by the grapes Chardonnay, Pinot Noir and Riesling, in which the volatile compounds of these sparkling wines have been calling attention to scientific studies. However, sparkling wines produced by other varietal grapes have not been a target of scientific research yet. The second fermentation occurs inside the bottle, in which confer a greater aromatic complexity to the sparkling wine produced by Traditional Method, due to the contact of it with lees in a reducing medium during a certain period of time. This happens due to secondary products of yeast metabolism, during the conversion of sugar in ethanol and carbon dioxide. This conversion depends on the nutrients added, called fermentation adjuvants, as the yeast used, since each one has a different metabolism for using this nutrients and sugars presented in the base wine. Thus, this work aims to characterize the volatile compounds of a south Brazilian winery, which use an innovative assemblage, using the grapes Chardonnay, Riesling, Viognier, Trebbiano and Pinot Noir. To the base wine, two different commercial yeasts were added: Saccharomyces cerevisiae and Saccharomyces bayanus to the performance of second fermentation. To each yeast used for fermenting the base wine, eight different fermentation adjuvants were used. The determination of volatile compounds were performed by Headspace solid-phase Microextraction (HS-SPME) and gas chromatography coupled to a mass quadrupole spectrometry (GC/MS). In total, 25 compounds were tentatively identified in the studied sparkling wines, being the majority listed as it follows, with their possible contribution to these sparkling wines aroma: ethyl octanoate (fruity), isoamyl alcohol (banana), octanoic acid (green pepper), and phenethyl alcohol (flower). Phenethyl phenylacetate, one of the minority compounds tentatively identified in some of the sparkling wines, is associated with fruity aroma. It was not possible to distinguish subgroups from different conditions during the second fermentation, when submitting the chromatographic areas of volatile compounds to cluster analysis. It implies that, under the experimental conditions of these study, it was not possible to differ the volatile compounds of the fermented (2nd fermentation) with S. cerevisiae and those which were fermented with S. bayanus. The same cluster analysis showed a subdivision of volatile compounds of the 16 wines in two groups, in which were probably distinguished due to the different nutritional adjuvants used: phosphate and Thiazote. Thus, throughout qualitative analysis by HS-SPME-GC/MS, it was possible to verify the homogeneity of volatile profile of the 16 sparkling wines, obtained by different fermentation adjuvants and two different yeast species of Saccharomyces sp, besides the comparison of volatile compounds presented in these sparkling wines with those others reported in the literature.
280

Novel Integrative Methods for Sampling Environmental Contaminants

January 2015 (has links)
abstract: Up to 25 percent of the operating budget for contaminated site restoration projects is spent on site characterization, including long-term monitoring of contaminant concentrations. The sensitivity, selectivity, and reproducibility of analytical methods have improved to the point where sampling techniques bear the primary responsibility for the accuracy and precision of the data. Most samples represent discrete concentrations in time and space; with sampling points frequently limited in both dimensions, sparse data sets are heavily extrapolated and the quality of data further limited. Methods are presented for characterizing contaminants in water (groundwater and surface waters) and indoor air. These techniques are integrative, providing information averaged over time and/or space, as opposed to instantaneous point measurements. Contaminants are concentrated from the environment, making these methods applicable to trace contaminants. These methods have the potential to complement existing techniques, providing the practitioner with opportunities to reduce costs and improve the quality of the data used in decision making. A conceptual model for integrative sampling of environmental waters is developed and a literature review establishes an advantage in precision for active samplers. A programmable sampler was employed to measure the concentration of chromate in a shallow aquifer exhibiting time-dependent contaminant concentrations, providing a unique data set and sustainability benefits. The analysis of heat exchanger condensate, a waste stream generated by air conditioning, is demonstrated in a non-intrusive method for indoor air quality assessment. In sum, these studies present new opportunities for effective, sustainable environmental characterization. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2015

Page generated in 0.0342 seconds