Spelling suggestions: "subject:"solidphase microextraction (SPME)"" "subject:"solidphase microextraction (SPME)""
1 |
Biomarkers of Lipid Oxidation in the Oral CavityVereb, Heather A. 11 June 2012 (has links)
Measuring lipid oxidation is useful as a means of monitoring oxidative stress, such as that induced by clinical conditions or environmental exposure. Characteristic volatile compounds, often with low threshold odors, are secondary products of lipid oxidation reactions. Metallic flavor in food and beverages has been linked with oxidation of lipids in the oral cavity. Breath, an emerging medium for analysis of internal condition, is one means of measuring the metal-induced lipid oxidation responsible for this flavor. This project analyzes the breath of human subjects, as well as lipid oxidation of in vitro samples to identify compounds responsible for producing metallic flavor, which result from the oxidation of lipids in the oral cavity. Because these analytes are found at extremely low (picomolar to nanomolar) concentrations, preconcentration of samples prior to gas chromatography-mass spectrometry analysis is crucial. This study utilizes both solid phase microextraction (SPME) and micromachined silicon micropreconcentrators to concentrate compounds in breath to optimize analysis. / Master of Science
|
2 |
Long-term properties of polyethylene films : efficiency of a natural antioxidantStrandberg, Clara January 2006 (has links)
There is a growing awareness of the risks of pollution in biological systems and one potential problem is the synthetic antioxidants, used for e.g. the stabilisation of polymeric materials. Natural antioxidants are an interesting alternative, if the high efficiency and thermal stability of the synthetic compounds can be reached. In the work described in this thesis, vitamin E (alfa-tocopherol) was studied as a natural antioxidant for the stabilisation of one of the major plastics, polyethylene (PE). The dependence of the surrounding environment for the efficiency of alfa-tocopherol in polyethylene (PE), throughout thermal aging, was characterised by sensitive techniques. Two techniques which have shown a high sensitivity in oxidation detection of polymers; chemiluminescence (CL) and gas chromatographic analysis, were compared with the commonly used methods, infrared spectroscopy (FT-IR) and thermal analysis. Three different additive systems were selected as active domains for -tocopherol in PE. Two of these contained carboxylic acid groups, poly (ethylene-co-acrylic acid) (EAA) and polyTRIM/PAA core-shell particles (Core), and the third, oat starch, had no such groups. The additives containing carboxylic groups improved the long-term efficiency of alfa-tocopherol in PE, according to carbonyl index measurements made by FT-IR, while the additive without carboxylic acid groups gave no improvement. The amount of carboxylic acids emitted from the materials after thermal aging, assessed by head-space solid-phase microextraction (HS-SPME) and gas chromatography-mass spectroscopy (GC-MS), also showed that EAA increased the antioxidant efficiency of alfa-tocopherol, whereas the Core system showed lower antioxidant efficiency. Reference systems containing the synthetic antioxidant Irganox 1076 and EAA or oat starch had the same performance as the materials stabilised with only the antioxidants. CL measurements in an inert atmosphere (TLI) have earlier been shown to give earlier oxidation detection than carbonyl index measurements in unstabilised PE. In this work, the TLI analysis and the carbonyl index measurements had the same sensitivity in the detection of oxidation in the stabilised materials. Assessment of low-molecular weight carboxylic acids in PE during the aging was made by gas chromatographic analysis together with solid-phase extraction. Propanoic acid showed the best correlation with the carbonyl index measurements, even if the carbonyl index showed earlier detection of oxidation. It was also found that TLI and CL in an oxidative atmosphere (CL-OIT) had the same sensitivity and were in accordance for all of the materials, with exception of the materials containing EAA and alfa-tocopherol or Irganox 1076. CL-OIT was also compared to the oxygen induction time determined by thermal analysis. / QC 20100921
|
3 |
Strategies to Improve Solid Phase Microextraction Sensitivity: Temperature, Geometry and Sorbent EffectsJiang, Ruifen January 2013 (has links)
Solid phase microextraction (SPME) has been widely used in a variety of sample matrices and proven to be a simple, fast and solvent-free sample preparation technique. A challenging limitation in the further development of this technique has been the insufficient sensitivity for some trace applications. This limitation lies mainly in the small volume of the extraction phase. According to the fundamentals of SPME, different strategies can be employed to achieve higher sensitivity for SPME sampling. These include cooling down the extraction phase, preparing a high capacity particle-loading extraction phase, as well as using a thin film with high surface area-to-volume ratio as the extraction phase. In this thesis, four sampling approaches were developed for high sensitivity sampling by employing cold fiber, thin film, cooling membrane and particle loading membrane as sampling tools. These proposed methods were applied to liquid, solid and particularly trace gas analysis.
First, a fully automated cold fiber device that improves the sensitivity of the technique by cooling down the extraction phase was developed. This device was coupled to a GERSTEL® MultiPurpose Sampler (MPS 2), and applied to the analysis of volatiles and semi-volatiles in aqueous and solid matrices. The proposed device was thoroughly evaluated for its extraction performance, robustness, reproducibility and reliability by gas chromatograph/mass spectrometer (GC/MS). The evaluation of the automated cold fiber device was carried out using a group of compounds characterized by different volatilities and polarities. Extraction efficiency and analytical figures of merit were compared to commercial SPME fibers. In the analysis of aqueous standard samples, the automated cold fiber device showed a significant improvement in extraction efficiency when compared to commercial polydimethylsiloxane (PDMS) and non-cooled cold fiber. This was achieved due to the low temperature of the coating during sampling. Results from the cold fiber and commercial divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber analysis of solid sample matrices were obtained and compared. Results demonstrated that the temperature gap between the sample matrix and the coating significantly improved the distribution coefficient, and consequently, the extraction amount. The newly automated cold fiber device presents a platform for headspace analysis of volatiles and semi-volatiles for a large number of samples, with improved throughput and sensitivity.
Thin film microextraction (TFME) improves the sensitivity by employing a membrane with a high surface area-to-volume ratio as the extraction phase. In Chapter 3, a simple non-invasive sample preparation method using TFME is proposed for sampling volatile skin emissions. Evaluation experiments were conducted to test the reproducibility of the sampling device, the effect of the membrane size, and the method for storage. Results supported the reproducibility of multi-membrane sampling, and demonstrated that sampling efficiency can be improved using a larger membrane. However, ability to control the sampling environment and time was proved to be critical in order to obtain reliable information; the in vivo skin emission sampling was also influenced by skin metabolism and environmental conditions. Next, the method of storage was fully investigated for the membrane device before and after sampling. This investigation of storage permitted the sampling and instrument analysis to be conducted at different locations. Finally, the developed skin sampling device was applied in the identification of dietary biomarkers after garlic and alcohol ingestion. In this experiment, the previously reported potential biomarkers dimethyl sulphone, allyl methyl sulfide and allyl mercaptan were detected after garlic intake, and ethanol was detected after the ingestion of alcohol. Experiments were also conducted in the analysis of volatile organic compounds (VOCs) from upper back, forearm and back thigh of the body on the same individual. Results showed that 27 compounds can be detected from all of the 3 locations. However, these compounds were quantitatively different. In addition, sampling of the upper back, where the density of sebaceous glands is relatively high, detected more compounds than the other regions.
In Chapter 4, a novel sample preparation method that combines the advantages of cold fiber and thin film was developed to achieve the high extraction efficiency necessary for high sensitivity gas sampling. A cooling sampling device was developed for the thin film microextraction. Method development for this sampling approach included evaluation of membrane temperature effect, membrane size effect, air flow rate and humidity effect. Results showed that high sensitivity for equilibrium sampling can be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity was obtained by thin membranes with a large surface area and/or high sampling flow rate. In addition, humidity evaluations showed no significant effect on extraction efficiency due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) and reproducibility of the developed cooling membrane gas sampling method were evaluated. LOD with a membrane radius of 1 cm at room temperature sampling were 9.24 ng/L, 0.12 ng/L, 0.10 ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility had a relative standard deviation (RSD%) lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooling membrane device could serve as a powerful tool for gas in trace analysis.
In Chapter 5, a particle-loading membrane was developed to combine advantages of high distribution coefficient and high surface area geometry, and applied in trace gas sampling. Bar coating, a simple and easy preparation method was applied in the preparation of the DVB/PDMS membrane. Membrane morphology, particle ratio, membrane size and extraction efficiency were fully evaluated for the prepared membrane. Results show that the DVB particles are uniformly distributed in the PDMS base. The addition of a DVB particle enhanced the stiffness of the membrane to some extent, and improved the extraction capacity of the membrane. Extraction capacity for benzene was enhanced by a factor of 100 when the membrane DVB particle ratio increased from 0% to 30%. Additionally, the prepared DVB/PDMS membrane provided higher extraction efficiency than pure PDMS membrane and DVB/PDMS fiber, especially for highly volatile and polar compounds. The high reproducibility of the prepared DVB/PDMS membrane in air sampling demonstrated the advantage of the bar coating preparation method, and also permitted quantitative analysis. Last, the prepared particle-loading membrane was applied to semi-quantitative and quantitative analysis of indoor and outdoor air, respectively. Both the equilibrium calibration method and diffusion-based calibration method were proposed for the quantitative analysis. Results showed that the high capacity particle-loading membrane can be used for monitoring trace analytes such as perfume components and air pollutants.
|
4 |
Strategies to Improve Solid Phase Microextraction Sensitivity: Temperature, Geometry and Sorbent EffectsJiang, Ruifen January 2013 (has links)
Solid phase microextraction (SPME) has been widely used in a variety of sample matrices and proven to be a simple, fast and solvent-free sample preparation technique. A challenging limitation in the further development of this technique has been the insufficient sensitivity for some trace applications. This limitation lies mainly in the small volume of the extraction phase. According to the fundamentals of SPME, different strategies can be employed to achieve higher sensitivity for SPME sampling. These include cooling down the extraction phase, preparing a high capacity particle-loading extraction phase, as well as using a thin film with high surface area-to-volume ratio as the extraction phase. In this thesis, four sampling approaches were developed for high sensitivity sampling by employing cold fiber, thin film, cooling membrane and particle loading membrane as sampling tools. These proposed methods were applied to liquid, solid and particularly trace gas analysis.
First, a fully automated cold fiber device that improves the sensitivity of the technique by cooling down the extraction phase was developed. This device was coupled to a GERSTEL® MultiPurpose Sampler (MPS 2), and applied to the analysis of volatiles and semi-volatiles in aqueous and solid matrices. The proposed device was thoroughly evaluated for its extraction performance, robustness, reproducibility and reliability by gas chromatograph/mass spectrometer (GC/MS). The evaluation of the automated cold fiber device was carried out using a group of compounds characterized by different volatilities and polarities. Extraction efficiency and analytical figures of merit were compared to commercial SPME fibers. In the analysis of aqueous standard samples, the automated cold fiber device showed a significant improvement in extraction efficiency when compared to commercial polydimethylsiloxane (PDMS) and non-cooled cold fiber. This was achieved due to the low temperature of the coating during sampling. Results from the cold fiber and commercial divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber analysis of solid sample matrices were obtained and compared. Results demonstrated that the temperature gap between the sample matrix and the coating significantly improved the distribution coefficient, and consequently, the extraction amount. The newly automated cold fiber device presents a platform for headspace analysis of volatiles and semi-volatiles for a large number of samples, with improved throughput and sensitivity.
Thin film microextraction (TFME) improves the sensitivity by employing a membrane with a high surface area-to-volume ratio as the extraction phase. In Chapter 3, a simple non-invasive sample preparation method using TFME is proposed for sampling volatile skin emissions. Evaluation experiments were conducted to test the reproducibility of the sampling device, the effect of the membrane size, and the method for storage. Results supported the reproducibility of multi-membrane sampling, and demonstrated that sampling efficiency can be improved using a larger membrane. However, ability to control the sampling environment and time was proved to be critical in order to obtain reliable information; the in vivo skin emission sampling was also influenced by skin metabolism and environmental conditions. Next, the method of storage was fully investigated for the membrane device before and after sampling. This investigation of storage permitted the sampling and instrument analysis to be conducted at different locations. Finally, the developed skin sampling device was applied in the identification of dietary biomarkers after garlic and alcohol ingestion. In this experiment, the previously reported potential biomarkers dimethyl sulphone, allyl methyl sulfide and allyl mercaptan were detected after garlic intake, and ethanol was detected after the ingestion of alcohol. Experiments were also conducted in the analysis of volatile organic compounds (VOCs) from upper back, forearm and back thigh of the body on the same individual. Results showed that 27 compounds can be detected from all of the 3 locations. However, these compounds were quantitatively different. In addition, sampling of the upper back, where the density of sebaceous glands is relatively high, detected more compounds than the other regions.
In Chapter 4, a novel sample preparation method that combines the advantages of cold fiber and thin film was developed to achieve the high extraction efficiency necessary for high sensitivity gas sampling. A cooling sampling device was developed for the thin film microextraction. Method development for this sampling approach included evaluation of membrane temperature effect, membrane size effect, air flow rate and humidity effect. Results showed that high sensitivity for equilibrium sampling can be achieved by either cooling down the membrane and/or using a large volume extraction phase. On the other hand, for pre-equilibrium extraction, in which the extracted amount was mainly determined by membrane surface area and diffusion coefficient, high sensitivity was obtained by thin membranes with a large surface area and/or high sampling flow rate. In addition, humidity evaluations showed no significant effect on extraction efficiency due to the absorption property of the liquid extraction phase. Next, the limit of detection (LOD) and reproducibility of the developed cooling membrane gas sampling method were evaluated. LOD with a membrane radius of 1 cm at room temperature sampling were 9.24 ng/L, 0.12 ng/L, 0.10 ng/L for limonene, cinnamaldehyde and 2-pentadecanone, respectively. Intra- and inter-membrane sampling reproducibility had a relative standard deviation (RSD%) lower than 8% and 13%, respectively. Results uniformly demonstrated that the proposed cooling membrane device could serve as a powerful tool for gas in trace analysis.
In Chapter 5, a particle-loading membrane was developed to combine advantages of high distribution coefficient and high surface area geometry, and applied in trace gas sampling. Bar coating, a simple and easy preparation method was applied in the preparation of the DVB/PDMS membrane. Membrane morphology, particle ratio, membrane size and extraction efficiency were fully evaluated for the prepared membrane. Results show that the DVB particles are uniformly distributed in the PDMS base. The addition of a DVB particle enhanced the stiffness of the membrane to some extent, and improved the extraction capacity of the membrane. Extraction capacity for benzene was enhanced by a factor of 100 when the membrane DVB particle ratio increased from 0% to 30%. Additionally, the prepared DVB/PDMS membrane provided higher extraction efficiency than pure PDMS membrane and DVB/PDMS fiber, especially for highly volatile and polar compounds. The high reproducibility of the prepared DVB/PDMS membrane in air sampling demonstrated the advantage of the bar coating preparation method, and also permitted quantitative analysis. Last, the prepared particle-loading membrane was applied to semi-quantitative and quantitative analysis of indoor and outdoor air, respectively. Both the equilibrium calibration method and diffusion-based calibration method were proposed for the quantitative analysis. Results showed that the high capacity particle-loading membrane can be used for monitoring trace analytes such as perfume components and air pollutants.
|
5 |
New Calibration Approaches in Solid Phase Microextraction for On-Site AnalysisChen, Yong January 2004 (has links)
Calibration methods for quantitative on-site sampling using solid phase microextraction (SPME) were developed based on diffusion mass transfer theory. This was investigated using adsorptive polydimethylsiloxane/divinylbenzene (PDMS/DVB) and Carboxen/polydimethylsiloxane (CAR/PDMS) SPME fiber coatings with volatile aromatic hydrocarbons (BTEX: benzene, toluene, ethylbenzene, and o-xylene) as test analytes. Parameters that affected the extraction process (sampling time, analyte concentration, water velocity, and temperature) were investigated. Very short sampling times (10-300 s) and sorbents with a strong affinity and large capacity were used to ensure a 'zero sink' effect calibrate process. It was found that mass uptake of analyte changed linearly with concentration. Increase of water velocity increased mass uptake, though the increase is not linear. Temperature did not affect mass uptake significantly under typical field sampling conditions. To further describe rapid SPME analysis of aqueous samples, a new model translated from heat transfer to a circular cylinder in cross flow was used. An empirical correlation to this model was used to predict the mass transfer coefficient. Findings indicated that the predicted mass uptake compared well with experimental mass uptake. The new model also predicted rapid air sampling accurately. To further integrate the sampling and analysis processes, especially for on-site or <i>in-vivo</i> investigations where the composition of the sample matrix is very complicated and/or agitation of the sample matrix is variable or unknown, a new approach for calibration was developed. This involved the loading internal standards onto the extraction fiber prior to the extraction step. During sampling, the standard partially desorbs into the sample matrix and the rate at which this process occurs, was for calibration. The kinetics of the absorption/desorption was investigated, and the isotropy of the two processes was demonstrated, thus validating this approach for calibration. A modified SPME device was used as a passive sampler to determine the time-weighted average (TWA) concentration of volatile organic compounds (VOCs) in air. The sampler collects the VOCs by the mechanism of molecular diffusion and sorption on to a coated fiber as collection medium. This process was shown to be described by Fick's first law of diffusion, whereby the amount of analyte accumulated over time enable measurement of the TWA concentration to which the sampler was exposed. TWA passive sampling with a SPME device was shown to be almost independent of face velocity, and to be more tolerant of high and low analyte concentrations and long and short sampling times, because of the ease with which the diffusional path length could be changed. Environmental conditions (temperature, pressure, relative humidity, and ozone) had little or no effect on sampling rate. When the SPME device was tested in the field and the results compared with those from National Institute of Occupational Health and Safety (NIOSH) method 1501 good agreement was obtained. To facilitate the use of SPME for field sampling, a new field sampler was designed and tested. The sampler was versatile and user-friendly. The SPME fiber can be positioned precisely inside the needle for TWA sampling, or exposed completely outside the needle for rapid sampling. The needle is protected within a shield at all times hereby eliminating the risk of operator injury and fiber damage. A replaceable Teflon cap is used to seal the needle to preserve sample integrity. Factors that affect the preservation of sample integrity (sorbent efficiency, temperature, and sealing materials) were studied. The use of a highly efficient sorbent is recommended as the first choice for the preservation of sample integrity. Teflon was a good material for sealing the fiber needle, had little memory effect, and could be used repeatedly. To address adsorption of high boiling point compounds on fiber needles, several kinds of deactivated needles were evaluated. RSC-2 blue fiber needles were the more effective. A preliminary field sampling investigation demonstrated the validity of the new SPME device for field applications.
|
6 |
New Calibration Approaches in Solid Phase Microextraction for On-Site AnalysisChen, Yong January 2004 (has links)
Calibration methods for quantitative on-site sampling using solid phase microextraction (SPME) were developed based on diffusion mass transfer theory. This was investigated using adsorptive polydimethylsiloxane/divinylbenzene (PDMS/DVB) and Carboxen/polydimethylsiloxane (CAR/PDMS) SPME fiber coatings with volatile aromatic hydrocarbons (BTEX: benzene, toluene, ethylbenzene, and o-xylene) as test analytes. Parameters that affected the extraction process (sampling time, analyte concentration, water velocity, and temperature) were investigated. Very short sampling times (10-300 s) and sorbents with a strong affinity and large capacity were used to ensure a 'zero sink' effect calibrate process. It was found that mass uptake of analyte changed linearly with concentration. Increase of water velocity increased mass uptake, though the increase is not linear. Temperature did not affect mass uptake significantly under typical field sampling conditions. To further describe rapid SPME analysis of aqueous samples, a new model translated from heat transfer to a circular cylinder in cross flow was used. An empirical correlation to this model was used to predict the mass transfer coefficient. Findings indicated that the predicted mass uptake compared well with experimental mass uptake. The new model also predicted rapid air sampling accurately. To further integrate the sampling and analysis processes, especially for on-site or <i>in-vivo</i> investigations where the composition of the sample matrix is very complicated and/or agitation of the sample matrix is variable or unknown, a new approach for calibration was developed. This involved the loading internal standards onto the extraction fiber prior to the extraction step. During sampling, the standard partially desorbs into the sample matrix and the rate at which this process occurs, was for calibration. The kinetics of the absorption/desorption was investigated, and the isotropy of the two processes was demonstrated, thus validating this approach for calibration. A modified SPME device was used as a passive sampler to determine the time-weighted average (TWA) concentration of volatile organic compounds (VOCs) in air. The sampler collects the VOCs by the mechanism of molecular diffusion and sorption on to a coated fiber as collection medium. This process was shown to be described by Fick's first law of diffusion, whereby the amount of analyte accumulated over time enable measurement of the TWA concentration to which the sampler was exposed. TWA passive sampling with a SPME device was shown to be almost independent of face velocity, and to be more tolerant of high and low analyte concentrations and long and short sampling times, because of the ease with which the diffusional path length could be changed. Environmental conditions (temperature, pressure, relative humidity, and ozone) had little or no effect on sampling rate. When the SPME device was tested in the field and the results compared with those from National Institute of Occupational Health and Safety (NIOSH) method 1501 good agreement was obtained. To facilitate the use of SPME for field sampling, a new field sampler was designed and tested. The sampler was versatile and user-friendly. The SPME fiber can be positioned precisely inside the needle for TWA sampling, or exposed completely outside the needle for rapid sampling. The needle is protected within a shield at all times hereby eliminating the risk of operator injury and fiber damage. A replaceable Teflon cap is used to seal the needle to preserve sample integrity. Factors that affect the preservation of sample integrity (sorbent efficiency, temperature, and sealing materials) were studied. The use of a highly efficient sorbent is recommended as the first choice for the preservation of sample integrity. Teflon was a good material for sealing the fiber needle, had little memory effect, and could be used repeatedly. To address adsorption of high boiling point compounds on fiber needles, several kinds of deactivated needles were evaluated. RSC-2 blue fiber needles were the more effective. A preliminary field sampling investigation demonstrated the validity of the new SPME device for field applications.
|
7 |
Effect of Thermal Processing and Pressure Assisted Thermal Processing (PATP) on the Flavor Profile of Conjugated Linoleic Acid (CLA)-Enriched MilkLeal Davila, Metzeri Unknown Date
No description available.
|
8 |
Optimization of Solid Phase Microextraction for Determination of Disinfection By-products in WaterRiazi Kermani, Farhad January 2012 (has links)
A new technique for sample preparation and trace analysis of organic pollutants in water using mixed-phase thin film (MPTF) devices, combined with direct thermal desorption, cold trapping, gas chromatography-mass spectrometry (GC-MS) is presented for the first time. Two novel analytical devices, Carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) TF samplers were fabricated using spin coating technique and glass wool fabric mesh as substrate. The samplers were easily tailored in size and shape by cutting tools. Good durability and flat-shape stability were observed during extractions and stirring in water. The latter characteristic obviates the need for an extra framed holder for rapid thin film microextraction (TFME) and makes the samplers more robust and user-friendly. The analytical performance of the MPTF devices was satisfactorily illustrated and compared with those of solid phase microextraction (SPME) fibers and PDMS thin film membrane using water samples spiked with seven N–nitrosamines (NAs), known as disinfection by-products (DBPs) in drinking water. Marked enhancement of extraction efficiencies (typically more than one order of magnitude) for the N-nitrosamines, including the hydrophilic ones, was obtained with the MPTF devices under generally pre-equilibrium conditions, compared to the SPME fibers and PDMS thin film membrane. The analytical results obtained in this study, including linearity, repeatability and detection levels at low ng/L for the tested compounds, indicate that the new thin film devices are promising for rapid sampling and sample preparation of trace levels of polar organic pollutants in water with sensitivities higher than SPME fibers and with a wide application range typical of mixed-phase coatings. The user-friendly format and robustness of the novel devices are also advantageous for on-site applications, which is the ultimate use of thin film samplers. Moreover, the thin film fabrication approach developed in this study offers the possibility of making other novel samplers with PDMS or different absorptive polymers such as polyacrylate (PA) and polyethylene glycol (PEG) as particle-free, or as particle-loaded thin films with a variety of adsorptive solid particles.
In another development in the course of this research, the performance and accuracy of the SPME fiber approach for sample preparation of selected DBPs were demonstrated and compared with the conventional liquid-liquid extraction (LLE) method by real drinking water samples analysis in collaboration with Health Canada. Four regulated trihalomethanes (THMs) and seven other DBPs known as priority by-products, including four haloacetonitriles, two haloketones and chloropicrin, were analyzed in real samples during two separate comparative studies. In each study, duplicate samples from several water treatment and distribution systems in Canada, collected and stabilized under the same protocol, were analyzed in parallel by two independent labs; in the University of Waterloo by an optimized headspace SPME-GC-MS and in Health Canada by a LLE-GC-ECD (electron capture detection) method equivalent to EPA 551.1. The values for the concentration of the analytes in the samples obtained by the two methods were in good agreement with each other in majority of the cases indicating that SPME affords the promise of a dependable sample preparation technique for rapid DBPs analysis. In particular, it was shown that the SPME fiber approach combined with GC-MS is a fast reliable alternative to the LLE-GC-ECD (EPA 551.1) method for analysis of the regulated THMs in the concentration ranges that are typical and relevant for drinking water samples.
|
9 |
Development of headspace solid phase microextraction gas chromatography mass spectrometry method for analysis of volatile organic compounds in board samples : Correlation study between chromatographic data and flavor properties / Utveckling av fastfas mikroextraktion gaskromatografi masspektrometisk metod för analys av flyktiga organiska föreningar i kartongprover : Korrelationsstudie av kromatografisk data och smakegenskaperZethelius, Thea January 2021 (has links)
The purpose of this thesis work was to develop a headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) method to detect volatile organic compounds (VOCs) in board samples and to statistically investigate potential correlation between chromatographic data and flavor data obtained from a trained panel. The developed method would hopefully serve as a complement to the already established routine analyses at Stora Enso and gain an increased understanding of which VOCs in the board influence its flavor properties. The impact of incubation time and adsorption time on the area under curve (AUC) was studied with a Design of Experiment screening using the software MODDE. The screening data showed a correlation between large AUC and low repeatability measured as relative standard deviation (RSD). The data was hard to fit to a model due to the large RSD values for the replicates, AUC for identified compounds as response gave an acceptable fit. The regression coefficients for the model showed that a longer adsorption time gave larger AUC, while incubation time had no significant impact on the response. Instead of following up the screening with an optimization, the focus was shifted to improving the repeatability of the method, i.e. lowering the RSD. The high RSD was believed to mainly be the result of leakage of analytes and unstable temperature during adsorption, preventing the system from reaching equilibrium. Different heating options and capping options for the vial was tested. Septum in crimp cap ensured a gas tight seal for the vial, giving lower RSD values and larger AUC compared to the other alternatives, showing that there was indeed a leakage. Using oil bath ensured stable temperature during the adsorption and detection of a larger number of VOCs but created a temperature gradient in the vial due to it not being fully submerged in the oil. Oil bath gave larger AUC, but still high RSD due to the temperature gradient making the method sensitive to variance in fiber depth in the vial. The final method was performed with 2 g of board sample in a 20 ml headspace vial sealed with a crimp cap with septa. The incubation and adsorption were performed with the vial immersed in a 90-degree oil bath. 20 min incubation time was chosen based on the time it took to get a stable temperature gradient in the vial, and 20 minutes adsorption time was chosen as a good compromise between large AUC and low RSD. Compared to Stora Ensos routine analysis, the developed SPME method gave chromatograms with an improved signal-to-noise ratio for the base line and several more peaks with larger AUC. For the board sample used during method development, the SPME-method identified 34 VOCs, while the routine analysis only identified 12. The developed method was applied on 11 archived board samples of the same quality that were selected based on their original flavor properties, to get a large diversity of samples. Flavor analysis was performed by letting a trained flavor panel describe the flavor based on intensity and character of the water that had individually been in indirect contact with one of the 11 board sample for 24 h. Potential correlation between chromatographic data obtained with the developed method and the flavor experience described by the flavor panelists was statistically investigated with the multivariate analysis software SIMCA. The correlation study showed that a combination of 12 VOCs with short retention time are most likely the main source of off-flavor which of 5 could only be identified with the developed SPME method. VOCs with long retention time did not contribute to an off-flavor and might have a masking effect on flavor given by other VOCS, however not confirmed in this study. Furthermore, the age of the board samples proved to be a good indicator for prediction of the flavor intensity, whereas the total AUC of the samples was not. Possible correlation between detected VOCs in the samples and flavor character given by the flavor panel were seen, however the variation in the data and the sample set were too small, preventing from making conclusions on individual VOCs impact on the flavor experience. The developed HS-SPME-GC-MS method would serve as a complement to the already established routine analyses at Stora Enso and has slightly increased the understanding of which VOCs in the board influence the flavor properties
|
10 |
Effects of UV Irradiation on the Reduction of Bacterial Pathogens and Chemical Indicators of MilkMatak, Kristen E. 03 December 2004 (has links)
Consumer demand for fresher and minimally processed foods has brought about a movement to find effective, non-thermal processing technologies for the treatment of milk. The influence of temperature on bacterial reduction in UV irradiated milk was tested. Commercially processed skim, reduced fat (2%), and whole milk samples were inoculated with a naladixic acid resistant E. coli O157:H7 surrogate (ATCC 25922), maintained at or brought to 4oC and 20oC, respectively, and then exposed to a UV light dose between 5.3-6.3 mJ/cm2 for approximately 1.5 sec using the CiderSure 3500 apparatus (FPE Inc., Macedon, NY). Bacterial concentrations before and after UV exposure were enumerated and the results indicated that processing temperature was not significantly related to bacterial reduction (p > 0.05). The results did indicate that skim milk samples had a greater bacterial reduction, regardless of processing temperature compared to reduced fat milk and whole milk samples (p < 0.05). Solids such as milk fat, protein, lactose and minerals, in the milk have a greater effect over bacterial reductions than processing temperatures.
Traditional goat cheeses are produced using unpasteurized milk, which increases the food safety concerns for these types of products. Fresh goat's milk was inoculated to 107 cfu/ml with Listeria monocytogenes (L-2289) and exposed to UV light using the CiderSure 3500 apparatus. Inoculated milk was exposed to an ultraviolet dose range between 0 and 20 mJ/cm2 to determine the optimal UV dose. A greater than 5-log reduction was achieved (p < 0.0001) when the milk was processed 12 times for a cumulative exposure time of roughly 18 sec and a cumulative UV dose of 15.8 +/- 1.6 mJ/cm2. The results of this study indicate that UV irradiation could be used for the reduction of L. monocytogenes in goat's milk.
Organoleptic consequences of goat's milk treated with UV technology were assessed. Olfactory studies were conducted and a highly significant difference was determined between the odor of fresh goat's milk and UV processed milk (p < 0.05). The extent of lipid oxidation and hydrolytic rancidity was measured by thiobarbituric acid reactive substances (TBARS) and acid degree values (ADVs). Results indicated that as the UV dose increased, there was a significant increase in TBARS values and ADVs of the milk samples (p < 0.05). Milk samples were processed using the UV processor under the same conditions as previously described without exposure to the UV source to determine if the agitation from pumping was causing off-flavors by way of hydrolytic rancidity. The ADVs from these samples increased at the same rate as the UV irradiated samples; however, sensory studies indicated that the increase of free fatty acids (FFA) was not enough to cause detectable off-odors in the milk. Solid phase microextraction and gas chromatography (SPME-GC) was utilized to quantify the production of volatile compounds that were formed due to UV processing. The formation of pentanal, hexanal and heptanal was identified after as little as 1.3 mJ/cm2 UV dose. Peak areas were measured and analyzed after 7.8 mJ/cm2 and 15.6 mJ/cm2 and were determined to increase significantly as UV dose increased (p < 0.05). The chemical analyses supported the findings from the olfactory studies. The outcome of this research showed that UV irradiation at the wavelength 254 nm, was detrimental to certain chemical properties of fluid milk. The properties that were perceived as negative in fluid milk may be considered an attribute in certain types of cheese and future studies in the cheese production sector should be considered. Other applications for this technology could be for use in developing countries where milk is not typically processed because of the high costs of thermal pasteurization. On-farm applications for the treatment of replacement milk should also be considered. / Ph. D.
|
Page generated in 0.0834 seconds