Spelling suggestions: "subject:"solidstate hydrogen storage"" "subject:"solidstate hydrogen storage""
1 |
Advanced Ti – based AB and AB2 hydride forming materialsDavids, Wafeeq January 2011 (has links)
Doctor Scientiae / Ti – based AB and AB₂ hydride forming materials have shown to be very promising hydrogen storage alloys due to their reasonable reversible hydrogen storage capacity at near ambient conditions, abundance and low cost. However, these materials are not used extensively due to their poor activation performances and poisoning tolerance, resulting insignificant impeding of hydrogen sorption. The overall goal of this project was to develop the knowledge base for solid-state hydrogen storage technology suitable for stationary and special vehicular applications focussing mainly on Ti – based metal hydrides. In order to accomplish this goal, the project had a dual focus which included the synthesis methodology of Ti – based AB and AB₂ materials and the development of new surface engineering solutions, based on electroless plating and chemical vapour deposition on the surface modification of Ti – based metal hydride forming materials using Pd-based catalytic layers. TiFe alloy was synthesised by sintering of the Ti and Fe powders and by arc-melting. Sintered samples revealed three phases: TiFe (major), Ti₄Fe₂O, and β-Ti. Hydrogen absorption showed that the sintered material was almost fully activated after the first vacuum heating (400 °C) when compared to the arc-melted sample requiring several activation cycles. The increase in the hydrogen absorption kinetics of the sintered sample was associated with the influence of the formed hydrogen transfer catalyst, viz. oxygen containing Ti₄Fe₂O₁₋ₓ and β-Ti, which was confirmed by the XRD data from the samples before and after hydrogenation. The introduction of oxygen impurity into TiFe alloy observed in the sintered sample significantly influenced on its PCT performances, due to formation of stable hydrides of the impurity phases, as well as destabilisation of both β-TiFeH and, especially, γ-TiFeH₂. This finally resulted in the decrease of the reversible hydrogen storage capacity of the oxygen-contaminated sample. TiFe alloy was also prepared via induction melting using graphite and alumo-silica crucibles. It was shown that the samples prepared via the graphite crucible produced TiFe alloy as the major phase, whereas the alumo-silica crucible produced Ti₄Fe₂O₁-x and TiFe₂ as the major phases, and TiFe alloy as the minor one. A new method for the production of TiFe – based materials by two-stage reduction of ilmenite (FeTiO₃) using H₂ and CaH₂ as reducing agents was developed. The reversible hydrogen absorption performance of the TiFe – based material prepared via reduction of ilmenite was 0.5 wt. % H, although hydrogen absorption capacity of TiFe reported in the literature should be about 1.8 wt. %. The main reason for this low hydrogen capacity is due to large amount of oxygen present in the as prepared TiFe alloy. Thus to improve the hydrogen absorption of the raw TiFe alloy, it was melted with Zr, Cr, Mn, Ni and Cu to yield an AB₂ alloy. For the as prepared AB₂ alloy, the reversible hydrogen sorption capacity was about 1.3 wt. % H at P=40 bar and >1.8 wt.% at P=150 bar, which is acceptable for stationary applications. Finally, the material was found to be superior as compared to known AB₂-type alloys, as regards to its poisoning tolerance: 10-minutes long exposure of the dehydrogenated material to air results in a slight decrease of the hydrogen absorption capacity, but almost does not reduce the rate of the hydrogenation. Hydrogen storage performance of the TiFe-based materials suffers from difficulties with hydrogenation and sensitivity towards impurities in hydrogen gas, reducing hydrogen uptake rates and decreasing the cycle stability. An efficient solution to this problem is in modification of the material surface by the deposition of metals (including Palladium) capable of catalysing the dissociative chemisorption of hydrogen molecules. In this work, the surface modification of TiFe alloy was performed using autocatalytic deposition using PdCl₂ as the Pd precursor and metal-organic chemical vapour deposition technique (MO CVD), by thermal decomposition of palladium (II) acetylacetonate (Pd[acac]₂) mixed with the powder of the parent alloy. After surface modification of TiFe – based metal hydride materials with Pd, the alloy activation performance improved resulting in the alloy absorbing hydrogen without any activation process. The material also showed to absorb hydrogen after exposure to air, which otherwise proved detrimental.
|
2 |
Herstellung und Eigenschaften hydridbasierter Verbundwerkstoffe mit hoher Energie- und Leistungsdichte für die WasserstoffspeicherungPohlmann, Carsten 10 November 2014 (has links) (PDF)
In dieser Arbeit werden kompaktierte Verbundwerkstoffe aus verschiedenen Speichermaterialien mit expandiertem Naturgraphit (ENG) in Hinblick auf die Anwendung als dynamische Wasserstofffeststoffspeichermaterialien untersucht. Pulverförmige hydridbildende Ausgangsmaterialien wurden mit bis zu 25 Masse-% ENG vermischt und bei Pressdrücken bis 600 MPa kompaktiert. Um einen weiten Anwendungsbereich abzudecken wurden ein Niedrigtemperaturmaterial (Ti-Mn-basierte Legierung; 0°C bis 100°C), zwei Mitteltemperaturmaterialien (Amid- und Alanatsystem; 100°C bis 200°C) und ein Hochtemperaturmaterial (Magnesium-Nickel-Legierung; 250°C bis 400°C) basierend auf einer umfangreichen Literaturrecherche gewählt. Die Verbundwerkstoffe weisen eine erhöhte radiale Wärmeleitfähigkeit auf und zeichnen sich im Vergleich zu herkömmlich verwendeten Pulverschüttungen durch höhere volumetrische Wasserstoffspeicherdichten aus.
Im Fokus der Untersuchungen stehen vor allem die im Hinblick auf Anwendungstauglichkeit wesentlichen Eigenschaften der Verbundwerkstoffe. So wurde z.B. der Wasserstoffdruck während der Dehydrierung variiert, um sicher zu stellen, Verbraucher mit üblichen Überdrücken versorgen zu können. Darüber hinaus wurde die Stabilität, Gaspermeabilität, Wärmeleitfähigkeit und Porosität der Presslinge im Verlauf zyklischer Hydrierung evaluiert und diskutiert. Insgesamt zeichnet sich ein hohes Potenzial ab, derartige Presslinge als Wasserstoffspeichermaterial für verschiedene Anwendungen entsprechend der jeweiligen Arbeitstemperaturen und weiteren Randbedingungen (z.B. Systemmasse, Tankvolumen etc.) zu verwenden. Diesbezüglich konnte mittels eines Tankdemonstrators basierend auf dem Ti-Mn-System ein Wasserstofffahrzeug erfolgreich betrieben und somit auch die Praxistauglichkeit der Hydrid-Graphit-Verbundmaterialien gezeigt werden. / Compacted composites of solid-state hydrogen storage materials and expanded natural graphite (ENG) are investigated in view of their potential for hydrogen storage applications. Powdery hydride-forming materials were blended with up to 25 weight-% ENG and compacted with up to 600 MPa compaction pressure. In order to cover a wide range of possible applications one low-temperature material (Ti-Mn-based alloy; 0°C to 100°C), two mid-temperature materials (amide and alante system; 100°C to 200°C) and one high-temperature material (magnesium-nickel alloy; 250°C to 400°C) were chosen based on a thorough literature review. The composites result in an increased radial thermal conductivity and are superior in their volumetric hydrogen storage density compared to commonly used loose powder beds.
The research is focused on the applicability of suchlike prepared composites. In this regard, the dehydrogenation back-pressures were varied to ensure a sufficient supply pressure of common consumer loads. Furthermore, the stability, gas permeability, thermal conductivity and porosity throughout cyclic hydrogenation were evaluated and discussed. Overall, a high potential to use suchlike composite materials for hydrogen storage applications regarding the specific working conditions (temperature, system mass, available volume etc.) is found. In this regard, a demonstrator tank equipped with Ti-Mn-based system was successfully supplying a hydrogen driven vehicle, which proves the feasibility of these hydride-graphite composite materials.
|
3 |
Développement de poudres à base de MgH2 et de complexes de métaux de transition pour le stockage solide de l’hydrogène / Development of MgH2-based powders doped with transition metal complexes for hydrogen storage applicationsGaley, Basile 29 November 2019 (has links)
Le développement de l’hydrogène en tant que nouveau vecteur d’énergie demande de pouvoir le stocker à grande échelle, dans des conditions d’encombrement, de coût énergétique et de sécurité acceptables. Le stockage sous forme solide dans des hydrures métalliques réversibles, constitue une solution particulièrement sûre et intéressante pour des applications dans le secteur des transports. Parmi de nombreux matériaux possibles, le système Mg/MgH2, constitue l’un des meilleurs candidats : abondant, bon marché, capacité de stockage réversible et élevée (7,6 % H2 en masse). Son utilisation à l’échelle industrielle est néanmoins limitée par les cinétiques de sorption très lentes et la stabilité thermodynamique importante (enthalpie de formation élevée) nécessitant des températures de fonctionnement supérieure à 300 °C. Ce projet vise au développement de composites à base de MgH2 et d’additifs avec des propriétés de stockage améliorées. L’originalité des travaux menés repose sur le type d’additifs choisi, les complexes de métaux de transition (centre métallique : Ni et Ru, ligands organiques : phosphines). En effet, ces derniers ne sont pour le moment que très peu utilisés dans la littérature. L’objectif de ce travail de thèse est donc d’explorer leur potentiel et leur efficacité pour améliorer les propriétés de stockage du système Mg/MgH2. Différents composites "MgH2 + complexe" ont été préparés par broyage et imprégnation et les cinétiques de sorption des systèmes obtenus ainsi que leurs paramètres thermodynamiques ont été déterminés par analyse thermique (DTP, DSC, PCT). Enfin, de nombreuses techniques de caractérisation physico-chimiques (DRX, RMN, XPS, MEB, MET) ont été utilisées afin de comprendre les phénomènes se déroulant lors de l’hydrogénation et la déshydrogénation des composites préparés. Le meilleur système « MgH2 + complexe » préparé durant ce travail (MgH2 dopé avec 20 % du complexe NiHCl(PCy3)2) est capable d’absorber 6 % en masse d’H2 à 100 °C en 30 min et de libérer son hydrogène sous vide à 200 °C. Les énergies d’activation apparentes et enthalpies de formation de ce composite sont respectivement de 22 et –65 kJ/mol H2 pour l’hydrogénation (contre 200 et –74,7 kJ/mol H2 pour du Mg commercial) et de 127 et 63 kJ/mol H2 pour la déshydrogénation (contre 239 et 74,7 kJ/mol H2 pour du MgH2 commercial) / Although hydrogen is widely recognized as a promising energy carrier, its widespread adoption as alternative to fossil fuels depends critically on the ability to store hydrogen at adequate densities, cost and security. Application devices are far from a valuable technology, and fundamental research is still required. In this regard, solid-state systems present the advantage of denser and safer hydrogen storage. Among them, Mg/MgH2 is considered as a highly promising material in terms of reversibility, cost, gravimetric and volumetric capacity. However, high thermodynamic stability (high formation enthalpy) and slow hydrogen sorption kinetics limits its practical applications.This project aims to develop Mg/MgH2-based systems with improved hydrogen storage properties thanks to the use of additives. The originality of this work is brought by the kind of additive chosen, transition metal complexes (Ni and Ru based, with phosphine ligands). Indeed, they are, for now, only very little used in the literature. The objective of this work is therefore to study their potential and their efficiency to improve the hydrogen storage properties of the Mg/MgH2 system. Different “MgH2 + complex” composites were prepared by ball milling and impregnation method and the sorption kinetics and thermodynamic parameters of the formed systems were studied by TPD, DSC and PCT analyses. Finally, XRD, NMR, XPS, SEM and TEM techniques were used to understand the phenomena taking place during the hydrogenation and the dehydrogenation of the prepared composites.The best “MgH2 + complex” system prepared during this work (MgH2 doped with 20 wt% of NiHCl(PCy3)2 complex) is able to absorb 6 wt% of H2 at 100 °C in 30 min, and to release the stored hydrogen at 200 °C under vacuum. The apparent activation energies and the formation enthalpies of the composite are respectively of 22 and –65 kJ/mol H2 for the hydrogenation reaction (against 200 and –74,7 kJ/mol H2 for commercial Mg) and of 127 and 63 kJ/mol H2 for dehydrogenation (against 239 and 74,7 kJ/mol H2 for commercial MgH2).
|
4 |
Herstellung und Eigenschaften hydridbasierter Verbundwerkstoffe mit hoher Energie- und Leistungsdichte für die WasserstoffspeicherungPohlmann, Carsten 29 September 2014 (has links)
In dieser Arbeit werden kompaktierte Verbundwerkstoffe aus verschiedenen Speichermaterialien mit expandiertem Naturgraphit (ENG) in Hinblick auf die Anwendung als dynamische Wasserstofffeststoffspeichermaterialien untersucht. Pulverförmige hydridbildende Ausgangsmaterialien wurden mit bis zu 25 Masse-% ENG vermischt und bei Pressdrücken bis 600 MPa kompaktiert. Um einen weiten Anwendungsbereich abzudecken wurden ein Niedrigtemperaturmaterial (Ti-Mn-basierte Legierung; 0°C bis 100°C), zwei Mitteltemperaturmaterialien (Amid- und Alanatsystem; 100°C bis 200°C) und ein Hochtemperaturmaterial (Magnesium-Nickel-Legierung; 250°C bis 400°C) basierend auf einer umfangreichen Literaturrecherche gewählt. Die Verbundwerkstoffe weisen eine erhöhte radiale Wärmeleitfähigkeit auf und zeichnen sich im Vergleich zu herkömmlich verwendeten Pulverschüttungen durch höhere volumetrische Wasserstoffspeicherdichten aus.
Im Fokus der Untersuchungen stehen vor allem die im Hinblick auf Anwendungstauglichkeit wesentlichen Eigenschaften der Verbundwerkstoffe. So wurde z.B. der Wasserstoffdruck während der Dehydrierung variiert, um sicher zu stellen, Verbraucher mit üblichen Überdrücken versorgen zu können. Darüber hinaus wurde die Stabilität, Gaspermeabilität, Wärmeleitfähigkeit und Porosität der Presslinge im Verlauf zyklischer Hydrierung evaluiert und diskutiert. Insgesamt zeichnet sich ein hohes Potenzial ab, derartige Presslinge als Wasserstoffspeichermaterial für verschiedene Anwendungen entsprechend der jeweiligen Arbeitstemperaturen und weiteren Randbedingungen (z.B. Systemmasse, Tankvolumen etc.) zu verwenden. Diesbezüglich konnte mittels eines Tankdemonstrators basierend auf dem Ti-Mn-System ein Wasserstofffahrzeug erfolgreich betrieben und somit auch die Praxistauglichkeit der Hydrid-Graphit-Verbundmaterialien gezeigt werden. / Compacted composites of solid-state hydrogen storage materials and expanded natural graphite (ENG) are investigated in view of their potential for hydrogen storage applications. Powdery hydride-forming materials were blended with up to 25 weight-% ENG and compacted with up to 600 MPa compaction pressure. In order to cover a wide range of possible applications one low-temperature material (Ti-Mn-based alloy; 0°C to 100°C), two mid-temperature materials (amide and alante system; 100°C to 200°C) and one high-temperature material (magnesium-nickel alloy; 250°C to 400°C) were chosen based on a thorough literature review. The composites result in an increased radial thermal conductivity and are superior in their volumetric hydrogen storage density compared to commonly used loose powder beds.
The research is focused on the applicability of suchlike prepared composites. In this regard, the dehydrogenation back-pressures were varied to ensure a sufficient supply pressure of common consumer loads. Furthermore, the stability, gas permeability, thermal conductivity and porosity throughout cyclic hydrogenation were evaluated and discussed. Overall, a high potential to use suchlike composite materials for hydrogen storage applications regarding the specific working conditions (temperature, system mass, available volume etc.) is found. In this regard, a demonstrator tank equipped with Ti-Mn-based system was successfully supplying a hydrogen driven vehicle, which proves the feasibility of these hydride-graphite composite materials.
|
5 |
Advanced low temperature metal hydride materials for low temperature proton exchange membrane fuel cell applicationNtsendwana, Bulelwa January 2010 (has links)
<p>Energy is one of the basic needs of human beings and is extremely crucial for continued development of human life. Our work, leisure and our economic, social and physical welfare all depend on the sufficient, uninterrupted supply of energy. Therefore, it is essential to provide adequate and affordable energy for improving human welfare and raising living standards. Global concern over environmental climate change linked to fossil fuel consumption has increased pressure to generate power from renewable sources [1]. Although substantial advances in renewable energy technologies have been made, significant challenges remain in developing integrated renewable energy systems due primarily to mismatch between load demand and source capabilities [2]. The output from renewable energy sources such as photo-voltaic, wind, tidal, and micro-hydro fluctuate on an hourly, daily, and seasonal basis. As a result, these devices are not well suited for directly powering loads that require a uniform and uninterrupted supply of input energy.</p>
|
6 |
Advanced low temperature metal hydride materials for low temperature proton exchange membrane fuel cell applicationNtsendwana, Bulelwa January 2010 (has links)
<p>Energy is one of the basic needs of human beings and is extremely crucial for continued development of human life. Our work, leisure and our economic, social and physical welfare all depend on the sufficient, uninterrupted supply of energy. Therefore, it is essential to provide adequate and affordable energy for improving human welfare and raising living standards. Global concern over environmental climate change linked to fossil fuel consumption has increased pressure to generate power from renewable sources [1]. Although substantial advances in renewable energy technologies have been made, significant challenges remain in developing integrated renewable energy systems due primarily to mismatch between load demand and source capabilities [2]. The output from renewable energy sources such as photo-voltaic, wind, tidal, and micro-hydro fluctuate on an hourly, daily, and seasonal basis. As a result, these devices are not well suited for directly powering loads that require a uniform and uninterrupted supply of input energy.</p>
|
7 |
Advanced low temperature metal hydride materials for low temperature proton exchange membrane fuel cell applicationNtsendwana, Bulelwa January 2010 (has links)
Magister Scientiae - MSc / Energy is one of the basic needs of human beings and is extremely crucial for continued development of human life. Our work, leisure and our economic, social and physical welfare all depend on the sufficient, uninterrupted supply of energy. Therefore, it is essential to provide adequate and affordable energy for improving human welfare and raising living standards. Global concern over environmental climate change linked to fossil fuel consumption has increased pressure to generate power from renewable sources [1]. Although substantial advances in renewable energy technologies have been made, significant challenges remain in developing integrated renewable energy systems due primarily to mismatch between load demand and source capabilities [2]. The output from renewable energy sources such as photo-voltaic, wind, tidal, and micro-hydro fluctuate on an hourly, daily, and seasonal basis. As a result, these devices are not well suited for directly powering loads that require a uniform and uninterrupted supply of input energy. / South Africa
|
Page generated in 0.1099 seconds