Spelling suggestions: "subject:"solidstate microstructure"" "subject:"solidstate microstructure""
1 |
Development of a double-layered perovskite as alternative anode material for high temperature steam electrolysisQadri, Syed N. January 2014 (has links)
The research presented is based on alternative anode materials for high temperature steam electrolysis. The key to commercially viable renewable energy economy is based on energy storage of intermittent sources. Hydrogen is the preferred form of energy storage for solid oxide electrolysis cells. However, conventional anode material lanthanum strontium manganite (LSM), suffers from poor ionic conductivity, thus prohibiting much of the bulk electrode from providing an enhanced electrochemical performance. This study explores the use of a double-layered perovskite system with mixed electronic and ionic conductivity for use as anode material. Specifically, the SmBa₁₋ₓSrₓCo₂O[sub](5+δ) system (SBSCO) is analyzed for characteristics that may enhance the performance and feasibility of SBSCO as an alternative anode material to LSM. Previous in-house work showed SmBa₀.₅Sr₀.₅Co₂O[sub](5+δ) had the lowest area specific resistance of any double- layered material reported. Here the system is further explored by studying the full range of compositions. From X-ray diffraction analysis, increased Sr substitution leads to a tetragonal phase change in SBSCO. High temperature x-ray diffraction of compositions showed thermal stability of structure. Magnetization measurements are reported for selected compositions. The stability of SBSCO was examined in CO₂ containing atmospheres. Despite containing alkaline earth metals, the system offers limited CO₂ tolerance. A set of thermodynamic parameters is presented based on CO₂ partial pressure and temperature. Model indicates SBSCO is a stable electrode material for both electrolysis and fuel cell modes. Compositions were tested for steam electrolysis performance with the use of YSZ electrolyte, and Ni-YSZ and La₀.₄Sr₀.₄Ni₀.₀₆Ti₀.₉₄O₂.₉₄ cathodes. SmBa₀.₃Sr₀.₇Co₂O[sub](5+δ) had the highest performance for compositions (0≤x≤1) based on I-V curves and impedance measurements. Stability tests were conducted in potentiostatic mode and no delamination was observed for SBSCO in microstructural analysis after testing. From these studies, SBSCO is demonstrated to be a suitable for application in electrolysis and an alternative for LSM as anode material.
|
2 |
Effet de la microstructure sur les propriétés excitoniques des polymères semi-conducteurs semi-cristallinsPaquin, Francis 01 1900 (has links)
Les polymères semi-conducteurs semicristallins sont utilisés au sein de diodes
électroluminescentes, transistors ou dispositifs photovoltaïques organiques. Ces matériaux peuvent être traités à partir de solutions ou directement à partir de leur
état solide et forment des agrégats moléculaires dont la morphologie dicte en grande
partie leurs propriétés optoélectroniques. Le poly(3-hexylthiophène) est un des polymères semi-conducteurs les plus étudiés. Lorsque le poids moléculaire (Mw) des
chaînes est inférieur à 50 kg/mol, la microstructure est polycristalline et composée
de chaînes formant des empilements-π. Lorsque Mw>50 kg/mol, la morphologie est
semicristalline et composée de domaines cristallins imbriquées dans une matrice de
chaînes amorphes.
À partir de techniques de spectroscopie en continu et ultrarapide et appuyé
de modèles théoriques, nous démontrons que la cohérence spatiale des excitons
dans ce matériau est légèrement anisotrope et dépend de Mw. Ceci nous permet
d’approfondir la compréhension de la relation intime entre le couplage inter et
intramoléculaire sur la forme spectrale en absorption et photoluminescence. De plus,
nous démontrons que les excitations photogénérées directement aux interfaces entre
les domaines cristallins et les régions amorphes génèrent des paires de polarons liés
qui se recombinent par effet tunnel sur des échelles de temps supérieures à 10ns. Le
taux de photoluminescence à long temps de vie provenant de ces paires de charges
dépend aussi de Mw et varie entre ∼10% et ∼40% pour les faibles et hauts poids
moléculaires respectivement. Nous fournissons un modèle permettant d’expliquer
le processus de photogénération des paires de polarons et nous élucidons le rôle de
la microstructure sur la dynamique de séparation et recombinaison de ces espèces. / Microstructure plays a crucial role in defining the optoelectrical properties of
conjugated polymeric semiconductors which can be used in light harvesting and
generating devices such as organic light emitting diodes, field effect transistors
or photovoltaic devices. These polymers can be processed from solution or solidstate
and form photophysical aggregates, consequently providing a complex network
which controls the fate of any photogenerated species. poly(3-hexylthiopene)
is one of the most studied polymeric semiconductor. In this material, the molecular
weight (Mw) of the polymer governs the microstructure and highly impact
the optical and electronic properties. Below Mw≈ 50 kg/mol, the polymer chains
forms polycrystalline domains of π-stacked molecules while high Mw (>50 kg/mol)
consists of a two-phase morphology of molecularly ordered crystallites that are embedded
in amorphous regions. Such morphology provides a bidimensionnal network
hosting both neutral excitations, known as Frenkel excitons, and polarons.
By means of steady-state and ultrafast spectroscopy experiment and backed up
theoretical modeling, we demonstrate that the spatial coherence of such excitations
are anisotropic in the lattice and depends on the Mw of the polymer, providing a
deep understanding of the interplay between interchain (excitonic) and intrachain
coupling in polymer aggregates. Moreover, we show that direct excitation at the
interface between molecularly ordered and amorphous regions generates tightlybound
charge pairs which decay via quantum tunneling over >10 ns. The yield
of delayed photoluminescence arising from the recombination of those charge pairs
varies between ∼10% and ∼40% for low and high Mw films respectively. We provide
a quantitative model that describes the photogeneration process of those geminate
polaron pairs and determine the role of the microstructure in the charge separation
and recombination processes.
|
Page generated in 0.0857 seconds