Spelling suggestions: "subject:"aolute cotransport"" "subject:"aolute detransport""
81 |
Modeling the effects of Transient Stream Flow on Solute Dynamics in Stream Banks and Intra-meander ZonesMahmood, Muhammad Nasir 11 May 2021 (has links)
The docotoral thesis titled 'Modeling the effects of Transient Stream Flow on Solute Dynamics in Stream Banks and Intra-meander Zones' investigates flow and solute dynamcis across surface water-groundwater interface under dynamic flow conditons through numerical simulations. The abstract of the thesis is as follows: Waters from various sources meet at the interface between streams and groundwater. Due to their different origins, these waters often have contrasting chemical signatures and therefore mixing of water at the interface may lead to significant changes in both surface and subsurface water quality. The riparian zone adjacent to the stream serves as transition region between groundwater and stream water, where complex water and solute mixing and transport processes occur. Predicting the direction and the magnitude of solute exchanges and the extent of transformations within the riparian zone is challenging due to the varying hydrologic and chemical conditions as well as heterogeneous morphological features which result in complex, three-dimensional flow patterns. The direction of water flow and solute transport in the riparian zone typically varies over time as a result of fluctuating stream water and groundwater levels. Particularly, increasing groundwater levels can mobilize solutes from the unsaturated zone which can be subsequently transported into the stream. Such complex, spatially and temporally varying processes are hard to capture with field observations alone and therefore modeling approaches are required to predict the system behavior as well as to understand the role of individual factors. In this thesis, we investigate the inter-connectivity of streamthe s and adjacent riparia zones in the context of water and solute exchanges both laterally for bank storage and longitudinally for hyporheic flow through meander bends. Using numerical modeling, the transient effect of stream flow events on solute transport and transformation within the initially unsaturated part of stream banks and meander bends have been simulated using a systematic set of hydrological, chemical and morphological scenarios. A two dimensional variably saturated media groundwater modeling set up was used to explore solute dynamics during bank flows. We simulated exchanges between stream and adjacent riparian zone driven by stream stage fluctuations during stream discharge events. To elucidate the effect of magnitude and duration of discharge events, we developed a number of single discharge event scenarios with systematically varying peak heights and event duration. The dominant solute layer was represented by applying high solute concentration in upper unsaturated riparian zone profile. Simulated results show that bank flows generated by high stream flow events can trigger solute mobilization in near stream riparian soils and subsequently export significant amounts of solutes into the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased duration significantly enhance solute export, however, peak height is found to be the dominant control for overall lateral mass export. The mobilized solutes are transported towards the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in a theoretically long tailing of bank outflows and solute mass outfluxes. Our bank flow simulations demonstrate that strong stream discharge events are likely to mobilize and export significant quantity of solutes from near stream riparian zones into the stream. Furthermore, the impact of short-term stream discharge variations on solute exchange may sustain for long times after the flow event. Meanders are prominent morphological features of stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange flow through the intrameander region, leading to solute transport and reactions within intra-meander region. We examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady-state and transient flow conditions. In order to explore the impact of meander morphology on intrameander flow, a number of theoretical meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander were developed. Three dimensional steady-state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region for all meander scenarios. The meandering stream was implemented in the model by adjusting the top layers of the modeling domain to the streambed elevation. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. Similar to the bank storage case, a high concentration of solute (carbon source) representing the dominant solute layer in the riparian profile was added in the unsaturated zone to evaluate the effect of stream flow event on mobilization and transport from the unsaturated part of intrameander region. Additionally, potential chemical reactions of aerobic respiration by the entry of oxygen rich surface water into subsurface as well denitrification due to stream and groundwater borne nitrates were also simulated. The results indicate that intra-meander mean residence times ranging from 18 to 61 days are influenced by meander geometry, as well as the size of the intra-meander area. We found that, intra-meander hydraulic gradient is the major control of RTs. In general, larger intra-meander areas lead to longer flow paths and higher mean intra-meander residence times (MRTs), whereas increased meander sinuosity results in shorter MRTs. The vertical extent of hyporheic flow paths generally decreases with increasing sinuosity. Transient modeling of hyporheic flow through meanders reveals that large stream flow events mobilize solutes from the unsaturated portion of intra-meander region leading to consequent transport into the stream via hyporheic flow. Advective solute transport dominates during the flow event; however significant amount of carbon is also consumed by aerobic respiration and denitrification. These reactions continue after the flow events depending upon the availability of carbon source. The thesis demonstrates that bank flows and intra-meander hyporheic exchange flows trigger solute mobilization from the dominant solute source layers in the RZ. Stream flow events driven water table fluctuations in the stream bank and in the intra-meander region transport substantial amount of solutes from the unsaturated RZ into the stream and therefore have significant potential to alter stream water quality.:Declaration
Abstract
Zusammenfassung
1 General Introduction
1.1 Background and Motivation
1.2 Hydrology and Riparian zones
1.2.1 Transport processes driven by fluctuation in riparian water table depth
1.2.1.1 Upland control
1.2.1.2 Stream control
1.2.2 Biochemical Transformations within the Riparian Zone
1.3 Types and scales of stream-riparian exchange
1.3.1 Hyporheic Exchange
1.3.1.1 Small Scale Vertical HEF
1.3.1.2 Large Scale lateral HEF
1.3.2 Bank Storage
1.4 Methods for estimation of GW-SW exchanges
1.4.1 Field Methods
1.4.1.1 Direct measurement of water flux
1.4.1.2 Tracer based Methods
1.4.2 Modeling Methods
1.4.2.1 Transient storage models
1.4.2.2 Physically based models
1.5 Research gaps and need
1.6 Objectives of the research
1.7 Thesis Outline
2 Flow and Transport Dynamics during Bank Flows
2.1 Introduction
2.2 Methods
2.2.1 Concept and modeling setup
2.2.2 Numerical Model
2.2.3 Stream discharge events
2.2.4 Model results evaluation
2.3 Results and discussion
2.3.1 Response of water and solute exchange to stream discharge events
2.3.1.1 Water exchange time scales
2.3.1.2 Stream water solute concentration
2.3.2 Solute mobilization within the riparian zone
2.3.3 Influence of peak height and event duration on solute mass export towards the stream
2.3.4 Effects of event hydrograph shape on stream water solute concentration
2.3.5 Model limitations and future studies
2.4 Summary and Conclusions
Appendix 2
3 Flow and Transport Dynamics within Intra-Meander Zone
3.1 Introduction
3.2 Methods
3.2.1 Meander Shape Scenarios
3.2.2 Surface Water Simulations
3.2.3 3D Groundwater Flow Simulations with Modeling code MIN3P
3.2.3.1 Steady Flow Simulations
3.2.3.2 Stream flow event and Solute Mobilization Set-up
3.2.4 Reactive Transport
3.3 Results and Discussion
3.3.1 Groundwater heads and flow paths in the saturated intrameander
zone
3.3.1.1 Groundwater heads
3.3.1.2 Flow paths and isochrones
3.3.1.3 Vertical extent of flow paths
3.3.2 Intra-Meander Residence Time Distribution
3.3.3 Factors affecting intra-meander flow and residence times
3.3.3.1 intra-meander hydraulic gradient
3.3.3.2 Maximum penetration depth
3.3.3.3 Meander sinuosity
3.3.3.4 intra-meander area (A)
3.3.4 Influence of Discharge Event on intra-meander Flow and Solute Transport
3.3.4.1 Spatial distribution of groundwater head and solute concentration
3.3.4.2 Time scales of intra-meander groundwater heads and solute transport
3.3.4.3 Solute export during stream discharge event
3.3.5 Intra-meander reactive transport during stream discharge event
3.3.5.1 Impact of stream discharge on aerobic respiration and denitrification
3.3.5.2 DOC mass removal during stream discharge event
3.4 Summary and Conclusions
Appendix 3
4 General Summary and Conclusions
4.1 Summary
4.2 Conclusions
4.2.1 Flow and Transport Dynamics in Near Stream Riparian Zone (Bank Flows)
4.2.2 Flow and Transport Dynamics within Intra-Meander Zone
4.3 Model Limitations and Future Studies
Bibliography
Acknowledgement
|
82 |
Entwicklung und Anwendung eines Softwaresystems zur Simulation des Wasserhaushalts und Stofftransports in variabel gesättigten BödenBlankenburg, René 29 April 2020 (has links)
Die Bodenzone, in der Literatur vielfach auch Wurzelzone, Aerationszone oder ungesättigte Zone genannt, ist geprägt durch variabel-wassergesättigte Verhältnisse und nimmt in vielen Disziplinen eine wichtige Rolle ein. Aus Sicht des Schutzguts Grundwasser stellt sie eine Schutz- und Pufferzone vor oberirdischen Umwelteinflüssen dar, in der eindringende oder eingebrachte Schadstoffe durch die dort ablaufenden Transport-, Abbau- und Sorptionsprozesse retardiert, teilweise bis vollständig abgebaut oder in andere Stoffe umgesetzt werden können, und somit eine Verunreinigung des Grundwassers verhindern kann. Um potenzielle Gefährdungen des Grundwassers anhand einer Altlast oder eines Schadensfalls abschätzen zu können, ist in Deutschland eine Sickerwasserprognose nach dem Bundesbodenschutzgesetz und der Bundesbodenschutzverordnung vorgeschrieben. Hierbei übernimmt die ungesättigte Zone die Funktion des Quell- und Transportterms für den Schadstoff. Der Quellterm dient der Beschreibung des zeitlichen Austragsverhaltens von Schadstoffen aus der Schadstoffquelle mit dem Sickerwasser, der Transportterm beschreibt den Wirkungspfad im Boden von der Geländeoberkante bis zur Grundwasseroberfläche.
Die Anforderungen und Aufgaben des vom BMBF geförderten Forschungsvorhabens „Prognose des Schadstoffeintrags in das Grundwasser mit dem Sickerwasser“ (SiWaP) motivierten die Entwicklung des Programms PCSiWaPro. Innerhalb des Vorhabens sollte die Möglichkeit geschaffen werden, mit geringem Aufwand eine modellgestützte Sickerwasserprognose unter Berücksichtigung der Forschungsergebnisse aus SiWaP durchführen zu können. Kommerziell verfügbare Software blieb dabei außen vor, da die Implementierung eigener Prozesse, Datenbanken und Parameter damit nicht möglich ist. Gleichzeitig war eine komplexe Betrachtung der ablaufenden Prozesse erforderlich sowie die Dokumentation der Ein- und Ausgabedaten für eine entsprechende Nachweispflicht. Dies führte zur Entwicklung einer grafischen Benutzeroberfläche (GUI) mit einem Assistenten, der den Anwender in 5 sequenziell ablaufenden Schritten zu einem physikalisch begründeten Ergebnis führt (Protokoll). Alle notwendigen Eingaben werden dazu mit sinnvollen Werten vorbelegt und bei Änderung durch den Nutzer auf Plausibilität geprüft. Gleichzeitig sollte die Funktionalität nicht auf die Möglichkeiten des Assistenten beschränkt bleiben und dem erfahrenen Modellierer alle Optionen der numerischen Simulation bereitstellen. Die Dokumentation der Ein- und Ausgabedaten wird dabei durch die Verwendung von Datenbanken sichergestellt. Für den Einsatz in Ingenieurbüros, Behörden oder auch international war die GUI mehrsprachig zu implementieren. Diese Anforderungen begründeten die Entwicklung eines Simulationssystems, um den Wasserhaushalt und Stofftransport in ungesättigten Böden auch unter komplexen Bedingungen berechnen zu können.
Das aus dem zuvor genannten BMBF-Verbundvorhaben SiWaP entstandene Programm PCSiWaPro war wesentlicher Bestandteil nachfolgender Forschungsvorhaben, deren Ergebnisse in die weitere Entwicklung des Programms einflossen und dessen Anwendungsgebiete außerhalb der Sickerwasserprognose erweiterten. So sind erforderliche Eingangsdaten wie bodenhydraulische und Stofftransportparameter oft mit Unsicherheiten behaftet oder können nur in Wertebereichen gefasst werden. Um derartige Unschärfen auch in den Berechnungsergebnissen von numerischen Simulationen ausweisen zu können, wurde die Fuzzy-Set-Theorie verwendet, die eine Zuordnung der Unsicherheiten über sogenannte α-Schnitte ermöglicht. Für jeden unscharfen Parameter kann dessen Schwankungsbreite definiert und in der Simulation berücksichtigt werden. Die Ausweisung der Unschärfen im Ergebnis erfolgt unter Angabe des sich ergebenden Minimums und Maximums der berechneten Größe (Druckhöhe, Konzentration).
Anhand verschiedener Beispielanwendungen werden die in der Arbeit vorgestellten Problemstellungen durch Einsatz von PCSiWaPro behandelt. Die Arbeit gibt ebenso einen Ausblick auf weiterführenden Forschungs- und Entwicklungsbedarf, der sich aus den in der Arbeit erzielten Ergebnissen und Betrachtungen ableiten lässt.:Abbildungsverzeichnis
Tabellenverzeichnis
Abkürzungsverzeichnis
Symbolverzeichnis
1 Einleitung
2 Wasserhaushaltsberechnung in variabel gesättigten porösen Medien
2.1 Zugrundeliegende Gleichung
2.2 Numerische Lösung
3 Transport- und Umsetzungsprozesse
3.1 Erhaltungsgleichung
3.2 Transportprozesse
3.3 Umsetzungsprozesse
3.4 Basisgleichung für den Stofftransport in PCSiWaPro
3.5 Numerische Lösung
4 Entwicklung des Programms PCSiWaPro
4.1 Softwarearchitektur
4.2 Datenbankkonzept
4.3 Benutzeroberfläche für das Preprocessing
4.4 Ergebnisvisualisierung und Postprocessing
4.5 Parallelisierung des Rechenkernels
4.6 Dual-Porosität nach DURNER
4.7 Strömungsrandbedingung als zeitvariable Polygonfunktion
4.8 Berücksichtigung von Unsicherheiten in den Eingangsdaten
5 Anwendungsbeispiele
5.1 Deichdurchströmung
5.2 Modellgestützte Sickerwasserprognose mit unscharfen Eingangsdaten
5.3 Test der Parallelisierung am synthetischen Beispiel
5.4 Zusammenfassung Anwendungsbeispiele
6 Zusammenfassung und Ausblick
7 Literaturverzeichnis
8 Anhang / The soil zone, often referred to as root zone, aeration zone or unsaturated zone in the literature, is characterized by variably saturated conditions and is of particular importance in many disciplines. From the groundwater point of view, it is a zone for protection and buffering of environmental processes at the surface. Penetrating hazardous substances can be retarded or even completely decayed due to the transport, degradation and sorption processes which occur and thus, can prevent a contamination of the groundwater.
In order to estimate potential threats to the groundwater based on a contaminated site or a damage, a leachate forecast is required in Germany according to the Federal Soil Protection Act (BBodSchG) and the Federal Soil Protection Ordinance (BBodSchV). The unsaturated zone takes on the function of the source and transport term for the pollutant. The source term function is used to describe the temporal discharge behavior of pollutants from the contaminant source with the leachate, the transport term describes the action path in the soil from the top of the site to the groundwater surface.
The requirements and tasks of the BMBF-funded research project 'Prognosis of Pollutant Infiltration into Groundwater with Leachate' (“Prognose des Schadstoffeintrags in das Grundwasser mit dem Sickerwasser”) (SiWaP) motivated the development of the PCSiWaPro program. Within the project, the possibility should be created to be able to carry out a model-based leachate forecast with little effort, taking into account the research results from the SiWaP project. Commercially available software had to be left out, since the implementation of new processes, databases and parameters is not possible. At the same time, a total consideration of the complex processes taking place was necessary, as was the documentation of the input and output data to provide evidence. This led to the development of a graphical user interface (GUI) with an assistant that leads the user in 5 sequential steps to a physically based result including a protocol. All necessary input data are pre-assigned with useful values and checked for plausibility when changed by the user. At the same time, the functionality should not be limited to the possibilities of the assistant and the GUI must provide all available options of a numerical simulation to advanced users. The documentation of the input and output data is ensured by using databases. The GUI provides multiple languages for use in engineering offices, authorities or international projects. These requirements justified the development of a simulation system to be able to calculate the water balance and solute transport in unsaturated soils even under complex conditions.
The PCSiWaPro program, emerged from the BMBF joint project SiWaP mentioned above, was an integral part of subsequent research projects, the results of which were incorporated into the further development of the program and expanded its fields of application outside of the leachate forecast.
Required input data such as soil hydraulic and solute transport parameters are often subject to uncertainties or can only be captured in value ranges. In order to show such blurring in the calculation results of numerical simulations, the fuzzy set theory was used, which enables the uncertainties to be assigned using so-called α-cuts. The fluctuation range for each uncertain parameter can be defined individually and considered in the simulation. The blurring in the result is indicated by specifying the resulting minimum and maximum of the calculated quantity (pressure level, concentration).
Using various sample applications, the problems presented in the thesis are dealt with by using PCSiWaPro. The thesis also gives an outlook on further research and development perspectives, which are derived from the results achieved in this thesis and the demands from the daily practice.:Abbildungsverzeichnis
Tabellenverzeichnis
Abkürzungsverzeichnis
Symbolverzeichnis
1 Einleitung
2 Wasserhaushaltsberechnung in variabel gesättigten porösen Medien
2.1 Zugrundeliegende Gleichung
2.2 Numerische Lösung
3 Transport- und Umsetzungsprozesse
3.1 Erhaltungsgleichung
3.2 Transportprozesse
3.3 Umsetzungsprozesse
3.4 Basisgleichung für den Stofftransport in PCSiWaPro
3.5 Numerische Lösung
4 Entwicklung des Programms PCSiWaPro
4.1 Softwarearchitektur
4.2 Datenbankkonzept
4.3 Benutzeroberfläche für das Preprocessing
4.4 Ergebnisvisualisierung und Postprocessing
4.5 Parallelisierung des Rechenkernels
4.6 Dual-Porosität nach DURNER
4.7 Strömungsrandbedingung als zeitvariable Polygonfunktion
4.8 Berücksichtigung von Unsicherheiten in den Eingangsdaten
5 Anwendungsbeispiele
5.1 Deichdurchströmung
5.2 Modellgestützte Sickerwasserprognose mit unscharfen Eingangsdaten
5.3 Test der Parallelisierung am synthetischen Beispiel
5.4 Zusammenfassung Anwendungsbeispiele
6 Zusammenfassung und Ausblick
7 Literaturverzeichnis
8 Anhang
|
83 |
Evaporation-Induced Salt Precipitation in Porous Media and the Governing Solute TransportRishav Roy (13149219) 25 July 2022 (has links)
<p> </p>
<p>Water scarcity is a global problem impacting a majority of the world population. A significant proportion of the global population is deprived of clean drinking water, an impact felt by the rural as well as urban population. Saltwater desalination provides an attractive option to produce clean water. Some technologies to generate potable water include reverse osmosis (RO), multi-stage flash distillation (MSF), vapor compression distillation and multi-effect distillation (MED). Distillation plants such as those in MED often have falling-film evaporators operating at low energy conversion efficiency and hence distillation is performed over multiple stages (or effects). Porous materials can be utilized as evaporators in such plants with the objective of leveraging their superior efficiency. This can potentially decrease the number of effects over which distillation occurs. However, evaporation of high-salinity salt solution eventually results in salt precipitation which can cause fouling and induce structural damages, especially if the precipitates appear within the porous medium. Crystallization-induced structural damages are also of significant concern to building materials and for their role in weathering of historical monuments. It is thus crucial to understand the mechanisms governing salt precipitation in a porous medium.</p>
<p>Transport of solute in such a medium is either driven by flow of the solution (advection) or by concentration gradients (diffusion). The dynamics of solute transport is further complicated due to the involvement of a reaction term accounting for any salt precipitation. The relative strengths of these driving forces determine the solute transport behavior during an evaporation-driven process. The wide-scale applications of solute transport and its complicated nature warrant investigation, both experimental and theoretical, of the dependence of solute transport and the subsequent precipitation on the operating conditions and the properties of the porous medium.</p>
<p>This dissertation first focuses on developing a novel modeling framework for evaluating the transient behavior of the solute mass fraction profile within the domain of a one-dimensional porous medium, and extending its capability to predict the formation of salt precipitate in the medium. Experimental investigations are then performed to study the formation of precipitate on sintered porous copper wicks of different particle-size compositions, and developing a mechanistic understanding of the governing principles.</p>
<p>A numerical modeling framework is developed to analyze evaporation-driven solute transport. Transient advection-diffusion equations govern the salt mass fraction profile of the solution inside the porous medium. These governing equations are solved to obtain the solute mass fraction profile within the porous medium as well as the effloresced salt crust. Further accounting for precipitation allows a study of the formation and growth of efflorescence and subflorescence. Crystallization experiments are performed by allowing a NaCl solution to evaporate from a porous medium of copper particles and the subflorescence trends predicted by the model are validated. The modeling framework offers a comprehensive tool for predicting the spatio-temporal solute mass fraction profiles and subsequent precipitation in a porous medium.</p>
<p>The dependence of efflorescence pattern on the properties of a porous medium is also investigated. Efflorescence patterns are visually observed and characterized on sintered copper particle wicks with spatially unimodal and bimodal compositions of different particle sizes. Efflorescence is found to form earlier and spread readily over a wick made from smaller particles, owing to their lower porosity, while it is limited to certain areas of the surface for wicks composed of the larger particles. A scaling analysis explains the observed efflorescence patterns in the bimodal wicks caused by particle size-induced non-uniform porosity and permeability. The non-uniformity reduces the advective flux in a high-permeability region by diverting flow towards a low-permeability region. This reduction in advective flux manifests as an exclusion distance surrounding a crystallization site where efflorescence is not expected to occur. The dependence of this exclusion distance on the porosity and permeability of the porous medium and the operating conditions is investigated. A large exclusion distance associated with the regions with bigger particles in the bimodal wicks explains preferential efflorescence over the regions with smaller particles. This novel scaling analysis coupled with the introduction of the exclusion distance provides guidelines for designing heterogeneous porous media that can localize efflorescence.</p>
<p>Additionally, droplet interactions with microstructured superhydrophobic surfaces as well as soft surfaces were investigated during the course of this dissertation, separate from the above investigations. These investigations involve the interplay of surface energies with electrical or elastic energies and are studied both experimentally and through theoretical models, and therefore are retained as additional chapters in the thesis as being of relevant interest. Electrowetting experiments are performed on superhydrophobic surfaces with re-entrant structures to study their resilience to the Cassie-to-Wenzel transition. The deformation of soft surfaces caused by forces exerted by microscale droplets is studied and the resulting interaction between multiple droplets is explored. </p>
|
Page generated in 0.0674 seconds