Spelling suggestions: "subject:"solutionution solitons""
1 |
Propagation d'informations le long d'une ligne de transmission non linéaire structurée en super réseau et simulant un neurone myélinisé / Spread information in a nonlinear transmission line simulating myelinated neuron and struture in superlatticeNkeumaleu, Guy-Merlin 17 January 2019 (has links)
Les systèmes non linéaires sont décrits pour la plupart avec des équations aux dérivées partiellesqui les caractérisent, comme la chaine de pendules couplés, la chaine de protéines comportant des molécules avec liaisons hydrogène, les réseaux atomiques ...etc. Ces modèles comportent le plus souvent des interactions inter particulaires anharmoniques et des potentiels de substrat déformables. En effet, aux conséquences importantes dues à la non linéarité et à la dispersion, ces autres phénomènes comme l’anharmonicité et la déformabilité conduisent à d’autres propriétés de propagation des ondes solitaires telles que les compactons, les kinks et les antikinks , les peakons , … ainsi qu’à la capacité du système à transmettre un signal. Nous utilisons ici la méthode de bifurcation pour tracer les différents portraits de phases obtenus par variation des paramètres du système. Nous mettons en évidence l’influence du facteur d’anharmonicité sur la transmissivité et la bistabilité du système: Il en ressort que l’amplitude du signal d’entrée qui produit la bistabilité augmente avec la valeur absolue du coefficient d’anharmonicité et la bistabilité est retardée. En tenant compte des propriétés importantes générées par de tels systèmes, il nous a paru intéressant de construire une ligne électrique caractérisée par les mêmes équations, mais en doublant sur un tronçon de 10 cellules la valeur de la capacité par rapport à celles des 10 condensateurs suivants, et en reproduisant ce motif avec une périodicité de 20 cellules. Nous réalisons ainsi un super réseau qui simule un neurone myélinisé. Les types de solitons obtenus semblent mieux adaptés pour décrire le signal électrique qui caractérise l’influx neuronal localisé dans l’espace avec un support compact. / Non-linear systems are almostly described by partial differential equations that characterize them. We have some systems such as the chain of coupled pebdelums, the protein chain comprising molecules with hydrogen bonds, atomic lattice, and so on .These systems are most often characterized by anharmonic inter particulate interactions and and then immersed in deformable potential substrates. In addition to nonlinearity and dispersion, these other phenomena namely anharmonicity and deformability are responsible for certain properties of propagation of solitary waves such as (compactons, kinks and anti-kinks, peackons, ...etc) and also the ability of the systems to transmit a signal . We used the bifurcation method to plot the different phase portraits obtained . For various parameters of such systems , we have highlighted the influence of anharmonicity on transmissivity and bistability of the system: It appears that the amplitude of the input signal which produces bistability increases with anharmonicity and the bistability is delayed.To considering these important properties generated by such systems, it seemed interesting to buildin an electrical line characterized by the same equations of the system. By alternately doubling the capacitance of the capacitors of a section of this line, we have realised a super-lattice that simulates a myelinised neuron. The types of solitons we get from this line are better adapted to describe the electrical signal which characterizes the neuron impulse located in space with a compact support.
|
Page generated in 0.0896 seconds