• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 12
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 18
  • 17
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Somatosensory cortical processing in the mouse forepaw system

Zhao, Wen-Jie 14 September 2016 (has links)
Der primäre somatosensorische Kortex (S1) besteht aus sechs Schichten (L1L6).Die koordinierte Aktivität dieser sechs Schichten kortikaler Neurone ist entscheidend für die sensorische Wahrnehmung und die Steuerung willkürlichen Verhaltens. Es ist jedoch noch wenig über die synaptischen Mechanismen bekannt, die die Verarbeitung zwischen den kortikalen Schichten bei sich aktiv verhaltenden Tieren bestimmen. Ich habe einfache und doppelte in vivoGanzzellableitungen im VorderpfotenAreal von S1 in der Maus gemacht, und gezeigt, dass Pyramidalzellen in L2/3 und L5 während einer Bewegung der Vorderpfote Unterschiede in ihren intrinsischen Eigenschaften und der Dynamik ihrer Membranpotenziale zeigen. Doppelableitungen haben gezeigt, dass sensorisch und motorisch ausgelöste synaptische Eingänge zwischen den Zellschichten weitgehend korreliert waren, niederfrequente unterschwellige Potenzialschwankungen und spontane Aktionspotenziale jedoch einen schichtspezifischen Zeitverlauf zeigten. Auf einer längeren Zeitskala beobachteten wir, dass spontane Bewegungen der Vorderpfote eine Dekorrelation unterschwelliger Aktivität zwischen den Schichten auslösten. Des Weiteren zeigten L5Pyramidalzellen durch ihre Aktivität sensorisch ausgelöste und spontane Bewegungen der Vorderpfote stärker an, als L2/3Neurone. Insgesamt deuten meine Daten darauf hin, dass Unterschiede zwischen den Zellschichten beim Timing von Aktionspotenzialen, bei der unterschwelligen Synchronisierung und bei den mittleren Feuerraten sowohl von der Quelle des zu Grunde liegenden synaptischen Eingangs als auch vom resultierenden Verhalten abhängen. Außerdem konnte ich zeigen, dass Neurone im VorderpfotenAreal von S1 auf leichte Kältereizung der Vorderpfote antworten, und dass diese Antwort vom Ionenkanal transient receptor potential cation channel subfamily M member 8 (TRPM8) in primären sensorischen afferenten Neuronen vermittelt wird. / The primary somatosensory cortex (SI) is composed of six layers (L1L6). The coordination of neural activities across six layers of cortical neurons is essential for reliable sensory perception and the control of voluntary behavior. However, the synaptic neural mechanisms governing translaminar cortical processing in behaving animals are still unknown. I made in vivo single and dual whole cell recordings in mouse forepaw SI, my work revealed that L2/3 and L5 pyramidal neurons have distinct intrinsic properties and membrane potential dynamics during forepaw behavior. Dual recordings showed that sensory and movement evoked synaptic inputs were closely correlated across layers, but low frequency subthreshold fluctuations and spontaneous action potentials exhibited a laminar specific temporal profile. At longer time scales, my data showed that spontaneous forepaw movement evoked a decorrelation of subthreshold activity across layers. Furthermore, L5 pyramidal neurons signaled sensory evoked and spontaneous forepaw movements more strangely than L2/3 neurons. Overall, my work suggests that laminar differences in the timing of action potential firing, subthreshold synchrony and mean firing rates are dependent both on the origin of the underlying synaptic input and the behavioral outcome of the event. In addition, I identified that forepaw SI neurons respond to mild cooling stimulation of the forepaw and that this response is mediated by the Transient receptor potential cation channel subfamily M member 8 (TRPM8) in primary sensory afferent neurons.
52

Der Einfluss räumlich selektiver Aufmerksamkeit auf die bewusste Wahrnehmung und kortikale Verarbeitung somatosensorischer Reize

Schubert, Ruth 20 December 2007 (has links)
Zahlreiche Untersuchungen belegen, dass räumlich selektive Aufmerksamkeit visuelle und auditive Reizverarbeitung beeinflusst. Bestehende Modellvorstellungen sind, aufgrund der geringen Kenntnisse vergleichbarer somatosensorischer Effekte, schwer zu einem allgemeinen Mechanismus generalisieren. Mittels zeitlich-räumlich hoch aufgelöster Messmethoden wurde in dieser Dissertation Effekte räumlich selektiver Aufmerksamkeit auf die bewusste Wahr-nehmung und kortikale Verarbeitung somatosensorischer Reize untersucht. Im Einzelnen wurde gezeigt, dass die räumlich selektive Aufmerksamkeit die Maskierung eines überschwelli-gen Reizes an einer Hand durch einen starken Reiz an der anderen Hand moduliert. Mittels Elektroenzephalografie (EEG) wurde nachgewiesen, dass nach der Stimulation die Verarbei-tung in einem fronto-parietalen Netzwerk den Zugang ins Bewusstsein signalisiert. Der Be-fund einer der bewussten Wahrnehmung zeitlich vorausgehenden neuronalen Desynchronisa-tion im frontalen Kortex und in S1 erlaubt eine Erweiterung bestehender Modellvorstellun-gen. In einer simultanen EEG-funktionelle Magnetresonanztomografie (fMRT) -Studie wurde gezeigt, dass räumlich selektive Aufmerksamkeit die Signalverarbeitung während einer frühen sensorischen Phase der Reizverarbeitung beeinflusst (50 ms). Dieser Effekt korrelierte mit den Blutflußveränderungen in S1. Zusammenfassend zeigen die Studien, dass räumlich selektive Aufmerksamkeit zwar frühe somatosensorische Aktivität in S1 sowie die Wahrnehmung so-matosensorischer Reize moduliert, dies jedoch keine hinreichende Bedingung für die bewusste Wahrnehmung ist. Hingegen ist die attentional kontrollierte Desynchronisation somatosenso-rischer Rhythmen vor der Stimulation, die eine verstärkte fronto-parietale Reizverarbeitung nach sich zieht, hierfür entscheidend. / Numerous studies have shown that selective orientation of attention to a stimulus location modulates visual and auditory stimulus processing. Due to the relatively little knowledge about comparable effects of attention in the somatosensory system, existing models can barely be assigned to general cortical mechanisms. The studies conducted in this dissertation should therefore contribute to this knowledge. Effects of spatial selective attention on conscious per-ception and cortical processing of somatosensory stimuli have been investigated by applying recording methods with high temporal and spatial resolutions. Specifically, it was shown that spatial selective attention modulates masking of supra-threshold stimulus on one hand by a strong stimulus applied to the other hand. Using electroencephalography (EEG), it was dem-onstrated that processing in a fronto-parietal network but not early S1-activation signals the entry into conscious perception. The finding of neuronal desynchronisation in the frontal cor-tex and S1 preceding conscious stimulus perception permits the extension of the existing models. With the aim of localizing the temporal effects of spatial selective attention, a simul-taneous EEG-functional magnetic resonance imaging (fMRI)-study was conducted. In con-trast to findings of visual attention, it was shown that orientation of attention enhances soma-tosensory processing at an early stage of stimulus processing (50 ms). This effect correlated with the changes of cortical blood flow in S1. Together, these studies show that spatial-selective attention modulates early activity in S1 as well as conscious perception of somatosen-sory stimuli. Nevertheless, this is not sufficient for an entrance into conscious perception. Instead, attentionally controlled pre-stimulus desynchronisation of somatosensory rhythmic activity, followed by an increased fronto-parietal stimulus processing are necessary prerequi-sites for conscious perception.
53

Social and sexual representation in the primary somatosensory cortex

Lenschow, Constanze 27 March 2017 (has links)
Die Arbeit untersucht die Neurophysiologie von zwei relevanten Berührungen: Die Vibrissenberührung von Artgenossen und die Berührung der Genitalien. Im ersten Teil, habe ich durch in vivo Ganzzellableitungen vom Barrel Kortex in kopf-fixierten Ratten untersucht, wie die Membranpotentialaktivität durch das Berühren einer Ratte aussieht. Während der Berührung von Artgenossen waren die Vibrissenbewegungen mit starken Membranpotentialänderungen assoziiert. Bei der spontanen Vibrissenbewegung wurden die Korrelationen nicht beobachtet. Weiterhin traten die Membranpotenzialfluktuationen bereits auf, bevor die Tiere sich berührten. Dies wurde allerdings nicht in anesthetisierten Ratten beobachtet. Zusätzlich waren die mit der Vibrissenberührung korrelierten Membranpotenzialfluktuationen größer, wenn die Tiere einen Artgenossen berührten verglichen zu Nichtartgenossen. Zusammenfassend, löst eine Berührung durch einen Artgenossen, sehr unterschiedlichere neuronale Antworten im Barrel Kortex aus, als konventionelle taktile Stimuli. Der zweite Teil untersucht den Genital Kortex. Die Charakterisierung der rezeptiven Felder demonstrierte eine robuste Repräsentation der Genitalien im sensorischen Kortex. Neuronale Antworten waren häufiger im Genital Kortex von Männchen als von Weibchen zu finden. Neurone zeigten diskontinuierliche und sexuell dimorphe rezeptive Felder. In Männchen, waren Neurone durch die taktile Stimulation des Vorderarms co-aktiviert, die Neurone in Weibchen eher durch die taktile Stimulation des Rumpfs. Diese mit den Genitalien ko-repräsentierten Körperteile, kommen während der Kopulation von Männchen und Weibchen in Berührung. Cytochrom Oxidase Färbungen von Schicht 4 zeigen einen Monomorphismus von kortikaler Penis und Klitoris Repräsentation. Dies ist in Hinsicht auf den Dimorphismus der externen Genitalien ein überraschendes Ergebnis. Zusätzlich wurde ein massives Wachstum des Genital Kortex während der Pubertät gefunden. / This thesis explores the neurophysiology of two forms of relevant touch: facial touch and genital touch. In the first part, I investigated, how subthreshold activity is altered during whisking in a social context using in vivo whole-cell recordings in the barrel cortex of head-restrained rats. Whisking was associated with strong membrane potential (Vm) fluctuations during facial touch, but not during free whisking. Strong whisking related Vm fluctuations could be seen even prior to contact and differed from those observed in free whisking episodes. Remarkably, such a pre-depolarization prior to touch was not observed in anaesthetized animals. The Vm fluctuations locked to the rat’s whisking observed in interactions with awake conspecifics were larger than those seen for whisking onto different objects and a stuffed rat. In summary, social facial touch induces responses in the barrel cortex that are remarkably different from responses evoked with conventional tactile stimuli. The second part of the thesis characterized the anatomy and physiology of the rat genital cortex. Mapping experiments revealed a robust representation of the genitals in rat primary somatosensory cortex. Genital responses were more frequent in males than in females. Neurons showed discontinuous and sexually dimorphic receptive fields. In males, genital neurons were mostly co-activated by tactile stimulation of the forearm; female genital neurons were co-activated by tactile stimulation of the trunk area. Hence, body parts co-represented with genitalia are those parts contacted in males and females during mounting. In contrast to the physiological sexual dimorphism, cytochrome oxidase staining of layer 4 revealed a monomorphism of the cortical penis and clitoris representation. This is a surprising finding given the pronounced dimorphism of external genitals. We also found a massive size increase of genital cortex during puberty.
54

Untersuchung der Sauerstoffkonzentrationsveränderungen in der Mikrozirkulation des Hirnkortex von Ratten bei funktioneller Stimulation mittels Phosphorescence Quenching

Leithner, Christoph 14 July 2003 (has links)
Funktionelle bildgebende Verfahren des Gehirns messen Veränderungen des lokalen cerebralen Blutflusses bzw. der Oxygenierung, die an neuronale Aktivität gekoppelt sind, und nicht die neuronale Aktivität selbst. Diese Veränderungen breiten sich über ein größeres Areal aus als die neuronale Aktivität, das räumliche Auflösungsvermögen der bildgebenden Verfahren bleibt daher begrenzt. Es ist vorgeschlagen worden, dass der Sauerstoffverbrauch unter neuronaler Aktivierung vor dem Blutfluss ansteige. Ein initial steigender Sauerstoffverbrauch würde dann eine Deoxygenierung des Gewebes bewirken, diese bliebe exakt auf das Aeral neuronaler Aktivität beschränkt und liesse sich mit bildgebenden Verfahren darstellen, die die lokale Oxygenierung messen. Um die Hypothese der initialen Deoxygenierung zu überprüfen führten wir Messungen der intravaskulären Sauerstoffkonzentration mittels Phosphorescence Quenching im somatosensorischen Kortex von Ratten unter physiologischer Stimulation (mechanische Auslenkung der Barthaare) durch. Die Tiere wurden mit Chloralose/Urethan anästhesiert und ein kranielles Fenster über dem somatosensorischen Kortex präpariert. Der Zeitverlauf der intravaskulären Sauerstoffkonzentration unter 4s-Stimulation eines einzelnen bzw. aller Barthaare zeigte eine nach ca. 1-1,5s beginnende Hyperoxygenierung, die ihr Maximum etwa 1-1,5s nach Ende der Stimulation erreichte. Es folgte ein gering ausgeprägter post-stimulus-undershoot. Eine reproduzierbare initiale Deoxygenierung liess sich nicht nachweisen. Diese Ergebnisse sind vereinbar mit einer engen Kopplung des lokalen cerebralen Blutflusses an die neuronale Aktivität während der gesamten Stimulationsdauer. / Functional brain imaging techniques such as fMRI or PET measure regional changes in cerebral blood flow and oxygenation related to neuronal activity rather than neuronal activity itself. These changes are believed to spread over a larger area than the neuronal activity thus limiting spatial resolution of imaging techniques. It has been suggested that oxygen consumption increases before blood flow in the region of increased activity. An increased oxygen consumption would lead to an initial deoxygenation limited exactly to the aera of neuronal activity thus providing a signal detectable with techniques measuring blood oxygenation (e.g. BOLD-fMRI). To test the hypothesis of an initial deoxygenation we performed measurements of intravascular oxygen concentration in the somatosensory cortex of rats in response to a physiological stimulus (whisker deflection) using oxygen dependent phosphorescence quenching. Animals were anesthetized with chloralose/urethane and a closed cranial window was implanted over the somatosensory cortex. Timecourses of intravascular oxygen concentration during 4s single-whisker as well as whole pad deflection showed a hyperoxygenation beginning 1-1,5s second after stimulatin onset and peaking one second after the end of the stimulation. A small post-stimulus undershoot was observed. We did not reproducibly detect an initial deoxygenation. These results indicate tight coupling between neuronal activity and cerebral blood flow throughout the stimulation period.
55

Sensory information to motor cortices: Effects of motor execution in the upper-limb contralateral to sensory input.

Legon, Wynn 22 September 2009 (has links)
Performance of efficient and precise motor output requires proper planning of movement parameters as well as integration of sensory feedback. Peripheral sensory information is projected not only to parietal somatosensory areas but also to cortical motor areas, particularly the supplementary motor area (SMA). These afferent sensory pathways to the frontal cortices are likely involved in the integration of sensory information for assistance in motor program planning and execution. It is not well understood how and where sensory information from the limb contralateral to motor output is modulated, but the SMA is a potential cortical source as it is active both before and during motor output and is particularly involved in movements that require coordination and bilateral upper-limb selection and use. A promising physiological index of sensory inflow to the SMA is the frontal N30 component of the median nerve (MN) somatosensory-evoked potential (SEP), which is generated in the SMA. The SMA has strong connections with ipsilateral areas 2, 5 and secondary somatosensory cortex (S2) as well as ipsilateral primary motor cortex (M1). As such, the SMA proves a fruitful candidate to assess how sensory information is modulated across the upper-limbs during the various stages of motor output. This thesis inquires into how somatosensory information is modulated in both the SMA and primary somatosensory cortical areas (S1) during the planning and execution of a motor output contralateral to sensory input across the upper-limbs, and further, how and what effect ipsilateral primary motor cortex (iM1) has upon modulation of sensory inputs to the SMA.
56

Sensory information to motor cortices: Effects of motor execution in the upper-limb contralateral to sensory input.

Legon, Wynn 22 September 2009 (has links)
Performance of efficient and precise motor output requires proper planning of movement parameters as well as integration of sensory feedback. Peripheral sensory information is projected not only to parietal somatosensory areas but also to cortical motor areas, particularly the supplementary motor area (SMA). These afferent sensory pathways to the frontal cortices are likely involved in the integration of sensory information for assistance in motor program planning and execution. It is not well understood how and where sensory information from the limb contralateral to motor output is modulated, but the SMA is a potential cortical source as it is active both before and during motor output and is particularly involved in movements that require coordination and bilateral upper-limb selection and use. A promising physiological index of sensory inflow to the SMA is the frontal N30 component of the median nerve (MN) somatosensory-evoked potential (SEP), which is generated in the SMA. The SMA has strong connections with ipsilateral areas 2, 5 and secondary somatosensory cortex (S2) as well as ipsilateral primary motor cortex (M1). As such, the SMA proves a fruitful candidate to assess how sensory information is modulated across the upper-limbs during the various stages of motor output. This thesis inquires into how somatosensory information is modulated in both the SMA and primary somatosensory cortical areas (S1) during the planning and execution of a motor output contralateral to sensory input across the upper-limbs, and further, how and what effect ipsilateral primary motor cortex (iM1) has upon modulation of sensory inputs to the SMA.
57

Μελέτη της βραχύχρονης πλαστικότητας του σωματοαισθητικού φλοιού του ανθρώπου μέσω χωροχρονικού εντοπισμού των μαγνητικών δίπολων σε ηλεκτρική διέγερση των δακτύλων

Σταυρινού, Μαρία 19 December 2008 (has links)
Η μελέτη της πλαστικότητας του ανθρώπινου εγκεφάλου σε όλα τα επίπεδα είναι ένα πολύ σημαντικό βήμα στην εξερεύνηση της λειτουργίας του εγκεφάλου και παίζει πολύ σημαντικό ρόλο στον σχεδιασμό θεραπειών αποκατάστασης μετά από εγκεφαλικές και κινητικές βλάβες. Τα τελευταία είκοσι χρόνια έχει καθιερωθεί πλέον η ιδέα ότι ο ώριμος εγκέφαλος μπορεί να ανακατανέμει τις περιοχές του στην περίπτωση μιας βλάβης ή στην περίπτωση περισσότερης χρήσης ή νέας λειτουργίας, αναδιοργανώνοντας έτσι την λειτουργικότητά του. Και ενώ υπάρχουν αρκετές μελέτες σε ζώα και λιγότερες σε ανθρώπους όπου μελετάται η χωρική έκταση των αλλαγών αυτών, λίγες εργασίες υπάρχουν που να μελετούν τη δυναμική των αλλαγών αυτών σε ένα πεδίο χρόνου μερικών ωρών. Η παρούσα διδακτορική διατριβή συνεισφέρει ακριβώς σε αυτόν τον τομέα: τη μελέτη των πλαστικών αλλαγών σε ένα εύρος χρόνου 6 ωρών με διαδοχικές μαγνητοεγκεφαλογραφικές (ΜΕΓ) μετρήσεις ανά μία ώρα της αναπαράστασης των δακτύλων στον πρωτεύοντα σωματοαισθητικό φλοιό. Μέχρι τώρα στην βιβλιογραφία οι μελέτες για βραχύχρονη πλαστικότητα εστίαζαν στη μελέτη αλλαγών μετά από συγκεκριμένη σωματοαισθητική διέγερση για συγκεκριμένο κάθε φορά χρόνο από μερικά λεπτά και έως τρεις με τέσσερις ώρες. Τα αποτελέσματα των ερευνών αυτών παρουσιάστηκαν διαφορετικά για διαφορετικούς χρόνους μελέτης. Έτσι και για την περίπτωση των δακτύλων στον σωματοαισθητικό φλοιό, μετά από σύντομο χρονικό διάστημα σωματοαιθητικής αλλαγής, η Ευκλείδεια απόσταση μεταξύ των μελετούμενων περιοχών έδειχνε να συρρικνώνεται (Braun et al, 2000; Ziemus et al, 2000) ενώ μετά από περισσότερο χρονικό διάστημα, αυτή να αυξάνεται (Godde et al, 2003; Schaeffer et al, 2004). Η παρούσα μελέτη, συνεισφέρει στην έρευνα της δυναμικής των πλαστικών αλλαγών σε μικρό εύρος χρόνου. Το πρωτόκολλο, είναι εμπνευσμένο από το πρώτο πείραμα πού έδειξε την ύπαρξη πλαστικότητας στον ώριμο εγκέφαλο μέσω της δημιουργίας συνδακτυλίας σε πιθήκους (Allard et al, 1988; 1991). Οι συγγραφείς παρατήρησαν σημαντικές αλλαγές στην αντιπροσώπεση των δύο αυτών δακτύλων στον σωματοαισθητικό φλοιό (Δ3 και Δ4) μετά από 3-7.5 μήνες. Οι δύο περιοχές εμφανίστηκαν ενοποιημένες, και χωρίς την διαχωριστική γραμμή που συνήθως τις διαχωρίζει. Επίσης παρατηρήθηκε η ύπαρξη ιδιοδεκτικών πεδίων που ανταποκρίνονταν στον ερεθισμό και των δύο δακτύλων. Οι συγγραφείς εξέφρασαν αυτό το αποτέλεσμα ως μία ένδειξη του ρόλου του χρονικού συγχρονισμού όπως εκφράζεται και με την αρχή του Hebb για την ομαδοποίηση των εισερχόμενων σημάτων και τον σχηματισμό των ιδιοδεκτικών πεδίων στον φλοιό. Το πρωτόκολλο που χρησιμοποιήθηκε στην παρούσα μελέτη και εμπνευσμένο από το προηγούμενο πείραμα περιλαμβάνει το δέσιμο των δακτύλων του δεξιού χεριού εθελοντών από τον δείκτη (Δ2) έως το μικρό δάκτυλο (Δ5) και τον ξεχωριστό ηλεκτρικό ερεθισμό των Δ2 και Δ5 για τον εντοπισμό της αντιπροσώπευσής τους στον σωματοαισθητικό φλοιό μέσα σε συνολικό χρονικό διάστημα 5.5 ωρών. Οι καταγραφές πραγματοποιήθηκαν με την τεχνική της Μαγνητοεγκεφαλογραφίας, και η ανάλυση έγινε βάσει της μεθόδου της Μαγνητικής Απεικόνισης Πηγών (Μagnetic Source Imaging). H MΕΓ, χάρη της μη αλλοίωσης των μαγνητικών σημάτων από τις ενδιάμεσες δομές του εγκεφάλου χαρίζει καλλίτερο εντοπισμό των ενεργοποιημένων περιοχών. Το κάθε πείραμα αποτελείτο από 7 ΜΕΓ μετρήσεις, με διαλείμματα μεταξύ των μετρήσεων. Η μέση απόσταση μεταξύ των καταγραφών ήταν περίπου 50 λεπτά της ώρας και το κάθε διάλειμμα διαρκούσε μισή ώρα. Η πρώτη καταγραφή έγινε πριν το δέσιμο των δακτύλων. Επίσης καταγραφές της ποσότητας του ηλεκτρικού παλμού (Sensory nerve action potential, SNAP) πάνω στο ωλένιο και μέσο νεύρο γινόταν ταυτόχρονα για την διασφάλιση της σταθερότητας του ηλεκτρικού παλμού που εισέρχεται στο σωματοαισθητικό φλοιό. Δύο πειράματα ελέγχου συμπληρώνουν το πρωτόκολλο, σε μερικούς από τους συμμετέχοντες, ένα με επανάληψη της διαδικασίας χωρίς δέσιμο των δακτύλων μετά από μερικούς μήνες και ένα με συμπληρωματικές ταυτόχρονες μετρήσεις στο άλλο ημισφαίριο. Τέλος η ανατομική μαγνητική τομογραφία, για κάθε συμμετέχοντα λήφθηκε, για επιβεβαίωση του εντοπισμού του ισοδύναμου διπόλου. Μέσω της τεχνικής λοιπόν του ισοδύναμου δίπολου, για κάθε δάκτυλο και κάθε ΜΕΓ καταγραφή κατά την διάρκεια των 5.5 ωρών εντοπίστηκε το ισοδύναμο δίπολο που χαρακτηρίζει το κέντρο βάρους της αντιπροσώπευσης του μεσοποιημένου προκλητού δυναμικού στον πρωτοταγή σωματοαισθητικό φλοιό. Στην συνέχεια ελήφθησαν οι συντεταγμένες του. Μετά την επεξεργασία προ-ανάλυσης του σήματος, μελετήθηκε το ισοδύναμο δίπολο που περιγράφει την κορυφή P30m. Το κύμα P30m προσδιορίζει την είσοδο του ηλεκτρικού σήματος στον σωματοαισθητικό φλοιό. Η θέση του διπόλου κατά τη διάρκεια των μετρήσεων παρουσίασε στατιστικώς σημαντικές αλλαγές, παραμένοντας εντούτοις μέσα στον σωματοαισθητικό φλοιό. Όπως έχει αποδειχθεί και από άλλες μελέτες, στατιστικά σημαντικές αλλαγές στη θέση του ισοδύναμου διπόλου ισοδυναμούν με αλλαγές στην σωματοτοπία (Hodzic et al, 2004; Pleger et al, 2003; 2001). Τα αποτελέσματά λοιπόν έδειξαν ότι συμβαίνουν στατιστικώς σημαντικές αλλαγές στην Ευκλείδεια απόσταση (ΕΑ) των περιοχών μέσα στις 5 περίπου ώρες που διαρκεί η ‘τεχνητή συνδακτυλία’ που επιβάλαμε. Αναλυτικά, και όπως φαίνεται στην Εικόνα 1, στην διάρκεια της πρώτης μισής ώρας, μια μείωση της ΕΑ μεταξύ του δεύτερου (Δ2) και πέμπτου δακτύλου (Δ5) έλαβε χώρα ακολουθούμενη από μία αύξηση της ΕΑ για τις επόμενες δύο ώρες. Στη συνέχεια, ξεκινάει μια μείωση της ΕΑ η οποία διαρκεί πάλι περίπου 2 ωρες. Σημειώνουμε εδώ ότι στα πειράματα ελέγχου, δεν παρατηρήθηκαν αλλαγές στην ΕΑ μεταξύ των δακτύλων, κάτι που μας κάνει να πιστεύουμε ότι η αλλαγές στην ΕΑ οφείλονται αποκλειστικά στην νέα σωματοαισθητική κατάσταση που δημιουργήθηκε με το δέσιμο των δακτύλων. Οι παρατηρούμενες αλλαγές, οι οποίες συμβαίνουν καθ’ όλη τη διάρκεια των έξι ωρών, οδηγούν στο συμπέρασμα ότι συμβαίνει μία συνεχής ανακατανομή (remapping) των περιοχών των δύο δακτύλων στη διάρκεια του χρόνου αυτού. Σημειώνουμε εδώ ότι στα πειράματα ελέγχου, δεν παρατηρήθηκαν αλλαγές στην ΕΑ μεταξύ των δακτύλων, κάτι που μας κάνει να πιστεύουμε ότι οι αλλαγές στην ΕΑ οφείλονται αποκλειστικά στην νέα σωματοαισθητική κατάσταση που δημιουργήθηκε με το δέσιμο των δακτύλων. Επειδή ενδείξεις δεν έχουμε για αλλαγή στην ισχύ του διπόλου συμπεραίνουμε ότι οι αλλαγές αυτές οφείλονται σε μετατόπιση και όχι σε εξάπλωση των αντίστοιχων περιοχών της αντιπροσώπευσης των δακτύλων. Ιδιαίτερο ενδιαφέρον παρουσιάζει το γεγονός ότι οι αλλαγές που παρατηρήσαμε συμβαδίζουν με αλλαγές άλλων ερευνητών στον σωματοαισθητικό φλοιό, ανάλογα με τον χρόνο της παρατήρησης. Δηλαδή, παρόμοιες αλλαγές συμβαίνουν στους αντίστοιχους χρόνους. Αναλυτικά, αύξηση της ΕΑ έχει παρατηρηθεί σε μικρά χρονικά διαστήματα ενώ μείωση της ΕΑ μετά από μεγαλύτερα (της τάξεως των μερικών ωρών) διαστήματα μετά από κάποια σωματοαισθητική αλλαγή/τροποποίηση. Τα αποτελέσματά μας λοιπόν ενοποιούν τα προηγούμενα αποτελέσματα παρουσιάζοντας ένα ενοποιημένο χρονικό πλαίσιο μέσα στο οποίο παρουσιάζονται οι αλλαγές αυτές. Ένα συμπέρασμα που μπορεί να εξαχθεί είναι ότι η ανακατανομή των ιδιοδεκτικών πεδίων των νευρώνων του σωματοαισθητικού φλοιού γίνεται με μη γραμμικό τρόπο. Ο εγκέφαλος προκειμένου να προσδιορίσει τις ομάδες νευρώνων που αναπαριστούν καλλίτερα τη νέα σωματοαισθητική πραγματικότητα ανακαταμερίζει τις δυνάμεις του και επαναπροσδιορίζει τα όριά του. Η αναδιάρθρωση των χαρτών του εγκεφάλου σε τόσο μικρά χρονικά διαστήματα έχει αποδοθεί σε μεταβολή της αναστολής. Το γεγονός ότι οι αλλαγές αυτές στην αναπαράσταση των δακτύλων Δ2 και Δ5 έγιναν τόσο γρήγορα δεν πρέπει να μας εκπλήσσει καθώς μελέτες σε in vivo και in vitro έχουν αποδείξει ότι παρόμοιες αλλαγές στο συναπτικό επίπεδο συμβαίνουν σε χρονικά όρια παρόμοια με αυτά του πειράματός μας, όπως στο LTP και LTD. Επίσης, άλλοι μηχανισμοί όπως αυτοί της ομοιόστασης συμμετέχουν ενεργά σε παρόμοιες περιπτώσεις που έχει παρουσιαστεί πλαστικότητα μετά από αλλαγή στην σωματοαισθητική εμπειρία. Η παρούσα μελέτη εκτός του ότι θέτει ένα χρονικό πλαίσιο μέσα στο οποίο, διαφορετικές αλλαγές στην ΕΑ λαμβάνουν χώρα, αποτελεί μια πρώτη ένδειξη της σημαντικότητας του χρόνου ως παραμέτρου σε ηλεκτροφυσιολογικές μετρήσεις. / The adult primary somatosensory cortex (SI) exhibits a detailed topographic organization of the hand and fingers, which undergoes plastic reorganizational changes following modifications of the sensory input. Although the spatial properties of these changes have been extensively investigated, little is known about their temporal dynamics. The current PhD thesis, contributes exactly to this field: to the study of plastic changes in time frame of 6 hours with consecutive Magnetoencephalographic measurements every hour. The inspiration for the protocol came from the finger webbing paradigm first employed to study adult human representational plasticity. In this paradigm of finger webbing, 4 fingers are temporarily webbed together, hence modifying their sensory feedback, for about 6 hours. We used Magnetoencephalography, a non invasive technique to study magnetic fields of the human brain, in order to measure changes in the hand representation in SI, before, during, and after finger webbing for this time frame of 6 hours. Cortical sources representing the index and little finger were localized using electric current stimulation and with the Equivalent Current Dipole method for all the recording sessions. Our results showed a decrease in the Euclidean distance (ED) between the cortical sources of the index and small finger 30 min after webbing, followed by an increase lasting for about 2 h after webbing, which was followed by a return toward baseline values. These results provide a unique frame in which the different representational changes occur, merging previous findings that were only apparently controversial, in which either increases or decreases in ED were reported after sensory manipulation for relatively long or short duration, respectively. Moreover, these observations further confirm that the mechanisms that underlie cortical reorganization are extremely rapid in their expression and, for the first time, show how brain reorganization occurs over time.
58

Cell therapy for spinal cord injury, studies of motor and sensory systems /

Hofstetter, Christoph, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 6 uppsatser.
59

Schichtenspezifische Charakterisierung von Parvalbumin-exprimierenden Neuronen im primären somatosensorischen Kortex der Maus / Layer-specific characterization of parvalbumin-expressing Neurons in the primary somatosensory cortex

Pater, Bettina Anna 20 July 2020 (has links)
No description available.
60

Des illusions tactiles à l’intégration spatiotemporelle dans le cortex somesthésique primaire : influence de la temporalité des stimuli cutanés sur leur représentation corticale / From tactile illusions to spatiotemporal integration in the primary somatosensory cortex : impact of the timing of cutaneous stimuli on their cortical representation

Corbo, Julien 12 December 2018 (has links)
Plusieurs illusions tactiles suggèrent que la temporalité des stimulations cutanées dans une séquence modifie leur perception spatiale. S’ils sont assez proches dans l’espace, plus l’intervalle temporel entre deux stimuli est court, plus la distance perçue entre eux est courte. Lorsque les deux stimuli sont présentés simultanément, on observe une perception fusionnée, unique et centrée entre les positions réelles. Ainsi, le système de perception tactile semble utiliser le temps entre les stimuli pour estimer l’espace qui les sépare. Dans l’optique de comprendre comment cette règle perceptive est implémentée dans le système nerveux, nous avons étudié la représentation corticale des stimulations qui induisent ces illusions. Nous avons recherché les distorsions spatiales de la représentation somatotopique dans le cortex somesthésique primaire, à la suite de l’application séquentielle ou simultanée d’une paire de stimuli cutanés sur l’extrémité des phalanges distales de la patte antérieure chez le rat anesthésié. Avec des enregistrements électrophysiologiques et d’imagerie optique extrinsèque, nous avons mis en évidence un phénomène de fusion corticale des entrées sensorielles simultanées, avec un patron spatial d’activation unimodal, centré entre les représentations individuelles des doigts adjacents costimulés. Dans le cas de stimuli successifs, nous avons observé des modifications des réponses au deuxième stimulus dépendantes de l’intervalle inter stimuli. Cette intégration spatiotemporelle ne semble pas contribuer directement au raccourcissement des distances perçues, mais pourrait favoriser les erreurs de localisation constatées lors de la perception des illusions. / Several tactile spatiotemporal illusions suggest that the timing of successive cutaneous stimulations modify the perception of their spatial location. If they are close enough in time and space, shorter inter-stimuli time intervals (ISI) lead to shorted perceived distances. To the extreme of this time-space relation, when the stimuli are simultaneous, subjects report the merged perception of a unique and centered point of stimulation. Therefore, the tactile perceptual system seems to use the time separating two stimuli to compute their spatial distance. To understand the implementation of this perceptual rule, one can investigate the neural representation of the stimuli that elicit the illusory percept, looking for spatial distortions and their underlying mechanisms. Studies based on the measure of the hemodynamic responses have shown such distortions of the somatotopic representations in the primary somatosensory cortex, for simultaneous and delayed stimulations. In order to enhance our understanding of the elementary phenomenon that underpins those spatial modifications of the sensory inputs, we investigated the cortical representation of pairs of simultaneous and delayed cutaneous stimuli in the S1 of anesthetized rats. Using electrophysiological recordings and extrinsic optical imaging, we revealed the cortical merging of inputs from simultaneous digits stimulation. When the stimuli were delayed, we observed ISI-dependent modulations of the responses to the second stimulus. This spatiotemporal integration, that didn’t seem to contribute directly to a distance contraction effect, could however favor the mislocalization observed in illusory perception.

Page generated in 0.1543 seconds