• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of soot processes in an optical diesel engine

Menkiel, Barbara January 2012 (has links)
This study is dedicated to investigation of soot formed during combustion in diesel engine. Measurements were performed in a high speed direct injection optical diesel engine. Initially soot particle size, size distribution and soot volume fraction were investigated using time resolved laser induced incandescence (TR-LII) technique. For this study standard diesel fuel was used and measurements were performed for various injection timing and two different engine loads. Investigation showed that TR-LII is a powerful tool that can be used for characterization of in-cylinder soot in the engines. Subsequently TR-LII technique was developed to measure in-cylinder soot in two dimensional plane (planar laser induced incandescence PLII) and technique was combined with high speed imaging to investigate soot processes for ultra-low sulfur diesel (ULSD) and bio-fuel (RME). Two injection strategies of single and double injection were applied during these measurements. A high speed imaging technique was used to study the soot formation and oxidation during the combustion process within the cylinder and PLII was applied later in the stroke to study qualitatively the relative amount of un-oxidised soot that was left in the combustion chamber. In addition to PLII, TR-LII technique was used simultaneously to explore crank angle resolved variation of primary soot particle size and their size distribution during the expansion stroke. The same measurements were repeated for fuels with different composition investigating the relationship between the fuel properties and soot emission. Finally mathematical model for soot particle size and distribution width was modified by introducing assumption of multi-lognormal in-cylinder soot particle size distribution.
2

Investigation of Fouling in Wavy-Fin Exhaust Gas Recirculators

Krishnamurthy, Nagendra 21 May 2010 (has links)
This dissertation presents a detailed account of the study undertaken on the subject of fouling of Exhaust Gas Recirculator (EGR) coolers. The fouling process in EGR coolers is identified to be due to two primary reasons — deposition of fine soot particles and condensation of hydrocarbons known as dry soot and wet soot fouling, respectively. Several numerical simulations are performed to study the fouling process. Preliminary analysis of the particle forces for representative conditions reveal that drag, thermophoresis and Brownian forces are the significant transport mechanisms and among them, the deposition process is dominated by thermophoresis. Soot deposition in a representative turbulent plain channel shows a direct relationship of the amount of deposition with the near-wall temperature gradient. Subsequently, periodic and developing flow simulations are performed on a wavy channel geometry, a common EGR design for various Reynolds numbers and thermal boundary conditions. Constant heat flux boundary condition is used in the periodic fully-developed calculations, which assist in establishing various deposition trends. The wavy nature of the walls is noted to affect the fouling process, resulting in specific deposition patterns. For the lower Reynolds number flows, significantly higher deposition is observed due to the higher particle residence times. On the other hand, the developing flow calculations facilitate the use of wall temperature distributions that typically exist in EGR coolers. The linear dependence of the amount of deposition on the near-wall temperature gradient or in other words, the heat flux, is ascertained. It is also observed in all the calculations, that for the sub-micron soot particles considered, the deposition process is almost independent of the particle size. In addition, the nature of the flow and heat transfer characteristics and the transition to turbulence in a developing wavy channel are studied in considerable detail. Finally, a study on the condensation of heavy hydrocarbons is undertaken as a post-processing step, which facilitates the prediction of the spatial distribution and time-growth of the combined fouling layer. From the calculations, the maximum thickness of the dry soot layer is observed to be near the entrance, whereas for the wet soot layer, the peak is found to be towards the exit of the EGR cooler. Further, parametric studies are carried out to investigate the effect of various physical properties and inlet conditions on the process of fouling. / Master of Science
3

Le spectromètre thermophorétique circulaire, un nouvel instrument pour mesurer la thermophorèse : application aux agrégats de suies de morphologie fractale / The spectromètre thermophorétique circulaire (SMTC), a new device for the study of the thermophoresis : Application on the fractals soot particles

Brugière, Edouard 03 December 2012 (has links)
Dans le but de montrer l’influence de la morphologie fractale d’un agrégat sur son comportement thermophorétique, un nouveau dispositif expérimental a été développé ; le SpectroMètreThermophorétique Circulaire (SMTC). Cet instrument permet de mesurer la vitesse moyenne de thermophorèse des particules dans une zone de sélection comprise entre une plaque chaude et une plaque froide. Pour cela, nous avons développé une fonction de transfert spécifique au principe de l’instrument sur la base des travaux existant sur les analyseurs différentiels de mobilité électrique.Une qualification expérimentale du SMTC a été réalisée avec des billes de latex monodispersées de tailles comprises entre 64 nm et 500 nm. Le bon accord entre les vitesses de thermophorèse obtenues et la théorie de Beresnev et Chernyak (1995) nous a permis de valider le fonctionnement de l’instrument.Par la suite, nous avons comparé les vitesses de thermophorèse expérimentales obtenues avec le SpectroMètre Thermophorétique Circulaire pour des particules sphériques et des agrégats produits par un générateur d’aérosol à combustion. Contrairement aux résultats obtenus avec les billes de latex, nous observons une augmentation de la vitesse de thermophorèse des agrégats avec leur diamètre de mobilité électrique.Grâce à une étude morphologique des agrégats, nous avons remarqué que la vitesse de thermophorèse est dépendante du nombre de particules primaires de l’agrégat. Ces résultats expérimentaux confirment pour la première fois les données théoriques de Mackowski (2006)obtenues par des simulations Monte-Carlo. De plus, une comparaison avec les travaux de Messerer et al. (2003) montre que la vitesse de thermophorèse des agrégats semble indépendante de la taille des particules primaires. / In order to show the influence of the morphology of a fractal aggregate on its thermophoretic behavior, a new experimental device has been developed; the SpectroMètre ThermophorétiqueCirculaire (SMTC). This instrument is used to measure the mean thermophoretic velocity of particles selected between a hot plate and a cold plate thanks to a transfer function based on the geometry of the radial flow differential mobility analyser RF-DMA or SMEC (Spectromètre de Mobilité Electrique Circulaire). For the experimental validation, effective thermophoretic velocities of monodispersed spherical latex particles for diameters ranging from 64 nm to 500 nm and a temperature gradient equal to 50 750 K/m are measured and compared with theoretical values. The good agreement between the experimentals results and theoretical values of Beresnev and Chernyak (1995) helps us to validate the operation of the instrument.Then we compare experimental thermophoretic velocity obtained with the SMTC for spherical particles and aggregates produced by a combustion aerosol generator. Contrary to the results obtained with the PSL particles, we observe that the thermophoretic velocity of aggregates increases with the electrical mobility diameter. Thanks to a morphological study of the aggregates, we showed that the thermophoretic velocity depends on the number of primary particles of the aggregate. These experimental results confirm,for the first time, the theoretical data of Mackowski (2006) obtained by a Monte Carlo simulation. Moreover, a comparison with the experimental results of Messerer et al. (2003) shows that thethermophoretic velocity of aggregates seems independent of the primary particle size.
4

Tribology Of Combustion Generated Soot

Bhowmick, Hiralal 07 1900 (has links) (PDF)
Soot is a carbonaceous materials produced as a result of incomplete combustion of fuels (gasoline, diesel, etc). At the present level of automobile technology, emission of soot from combustion in diesel engine appears to be an inevitability. The disadvantage in the diesel combustion is that it is not homogeneous throughout the cylinder. So the fuel-air ratio cannot be maintained constant throughout the flame zone and hence rich combustion zone leads to the formation of soot. Diesel engine combustion processes produce a large amount of soot, which is one of the major pollutant emissions of the exhaust systems. The fraction of combustion particulate, which is soot, is often estimated by finding the insoluble portion of the particulate. Hydrocarbons or other available molecules may also condense on or beads orbed by soot depending on the surrounding conditions. Other particulate matter constituents include partially burned fuel/lubricant oil bound water, wear metal and fuel derived sulfate. In diesel engine lubrication, soot has long been recognized as the major contaminant that is detrimental to engine lubrication, particularly in friction and wear. Different techniques for soot abatement have been investigated by researchers from the field of combustion and fuel. In spite of the large numbers of investigations of soot formation conducted till date, there is relatively little quantitative information is available about the mechanisms and governing rate processes. Some of the studies focused on the combustion chemistry of soot formation while some emphasized on engine design. On the other hand comparatively a few research works are coming out from the tribological point of view. Considering that internal combustion engines play such an important role in industry, investigative research of the parametric influences of particle size, agglomeration, oil viscosity, additives and surfactant as well as chemistry and electrical properties of particles on wear as well as into the wear mechanisms have not perhaps been as extensive as it is detrimental. Existence of a large numbers of variables in tribological contacts makes the situation very complex and difficult to analyze it quantitatively. In this complex scenario, where many opposed effects are playing their roles in soot tribology, the influence of the physical, structural and mechanical properties of soot on engine tribology has limited attention. We focus our study on one of the end effects of engine soot; friction and wear of the engine components. Since a diesel engine is not particularly suitable for use in a laboratory study of the fundamental processes and parameters of combustion due to its inherent difficulties on control and safety as well as data analysis uncertainty, so the most useful studies of soot fundamentals have emerged from studies of processes which have used simplified environments such as diffusion flames. We focus on soot tribology in steel-on-steel interaction in the presence of soot material suspended in relatively simple paraffinic hydrocarbons, hexadecane; with and without an additive. The physical, structural, chemical and mechanical properties of the particle and their changes as a function of tribological parameters are monitored throughout this study. Three type of soot are used in this work. Firstly, commercial grade carbon blacks has been used as soot simulant. Secondly, to enable controlled variations of the physical, mechanical, chemical and geometrical parameters of the particles, soot is generated in-situ by burning ethylene gas and the particles are extracted thermophoretically from different thermal zones of the flame. Thirdly, to establish the validity of the study, two types of diesel soots are extracted from an engine and studied. The objective is to use such an understanding to elucidate the basic mechanisms of friction and wear in the presence of soot which may limit the performance of a diesel engine. From our study we find that these soots have widely different morphologies, crystallographic orders and reactivity. At tribological contact the soot agglomerates fragment to primary level particles. The physical and chemical properties of such particles determine the friction between and wear of mating components. If the soot is strongly graphitic, the friction and wear are moderate. If the soot is made of chemically active organic groups, the friction and wear are high. The hardness, friction and resistance to material removal of the soot collected near the flame tip and diesel soot are found to be high compared to the other types of soot. Besides, the high hardness, irregular primary particle shape, large inter-particle adhesion leading to agglomeration and more abrasive nature of diesel soot influence the metal wear adversely. This trend of soot tribology is profound when these soots are suitably dispersed in the oil by the addition of dispersants, in our case it is polyisobutylene succinimide. Different functional groups present on the soot surface play important role in defining the interaction between surrounding medium and contacts which, in turn define the contact conditions, particle/agglomerate behavior and soot tribology. Finally, agglomeration is simulated using the features of a dissipative particle dynamics package as the simulation technique. Simulations are performed on a sizeable number of particles to observe agglomeration behavior, on simple environment, in future which can be further extended.

Page generated in 0.0559 seconds