• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intensidade acústica útil: um novo método para identificação de regiões radiantes em superfícies com geometrias arbitrárias / Useful acoustic intensity: a new method for the identification of radiant regions on surfaces with arbitrary geometries

Cleber de Almeida Corrêa Junior 16 March 2012 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Neste trabalho é descrita a teoria necessária para a obtenção da grandeza denominada intensidade supersônica, a qual tem por objetivo identificar as regiões de uma fonte de ruído que efetivamente contribuem para a potência sonora, filtrando, consequentemente, a parcela referente às ondas sonoras recirculantes e evanescentes. É apresentada a abordagem de Fourier para a obtenção da intensidade supersônica em fontes com geometrias separáveis e a formulação numérica existente para a obtenção de um equivalente à intensidade supersônica em fontes sonoras com geometrias arbitrárias. Este trabalho apresenta como principal contribuição original, uma técnica para o cálculo de um equivalente à intensidade supersônica, denominado aqui de intensidade acústica útil, capaz de identificar as regiões de uma superfície vibrante de geometria arbitrária que efetivamente contribuem para a potência sonora que será radiada. Ao contrário da formulação numérica existente, o modelo proposto é mais direto, totalmente formulado na superfície vibrante, onde a potência sonora é obtida através de um operador (uma matriz) que relaciona a potência sonora radiada com a distribuição de velocidade normal à superfície vibrante, obtida com o uso do método de elementos finitos. Tal operador, chamado aqui de operador de potência, é Hermitiano, fato crucial para a obtenção da intensidade acússtica útil, após a aplicação da decomposição em autovalores e autovetores no operador de potência, e do critério de truncamento proposto. Exemplos de aplicações da intensidade acústica útil em superfícies vibrantes com a geometria de uma placa, de um cilindro com tampas e de um silenciador automotivo são apresentados, e os resultados são comparados com os obtidos via intensidade supersônica (placa) e via técnica numérica existente (cilindro), evidenciando que a intensidade acústica útil traz, como benefício adicional, uma redução em relação ao tempo computacional quando comparada com a técnica numérica existente. / This work describes the theory necessary to obtain the greatness called supersonic intensity, which aims to identify the regions of a sound source that effectively contribute to the sound power radiated, filtering recirculating and evanescent sound waves. The Fourier approach to obtain the supersonic intensity in sources having separable geometries, and the existent numerical formulation to obtain an equivalent to supersonic intensity on noise sources with arbitrary geometry. This work presents a new numeric technique for the computation of the numerical equivalent to the supersonic acoustic intensity. The technique provides the identification of the regions of a noise source with arbitrary geometry that effectively contribute to the sound power radiated to the far field by filtering recirculating and evanescent sound waves. The proposed technique is entirely formulated on the vibrating surface. The acoustic power radiated is obtained through a numerical operator that relates it with the distribution of superficial normal velocity, which is obtained by the boundary element method. Such power operator, possesses the property of being Hermitian. The advantage of this characteristic is that their eigenvalues are real and their eigenvectors form an orthonormal set for the velocity distribution. It is applied to the power operator the decomposition in eigenvalues and eigenvectors, becoming possible to compute the numerical equivalent to the supersonic intensity, called here useful intensity, after applying a cutoff criterion to remove the non propagating components. Some numerical tests confirming the effectiveness of the convergence criterions are presented. Examples of the application of the useful intensity technique in vibrating surfaces such as a plate, a cylinder with flat caps and an automotive muffler are presented and the numerical results are discussed, showing that the useful intensity brings, as additional benefit, a reduction of the computational effort, when compared to existent numerical technique.
2

Intensidade acústica útil: um novo método para identificação de regiões radiantes em superfícies com geometrias arbitrárias / Useful acoustic intensity: a new method for the identification of radiant regions on surfaces with arbitrary geometries

Cleber de Almeida Corrêa Junior 16 March 2012 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Neste trabalho é descrita a teoria necessária para a obtenção da grandeza denominada intensidade supersônica, a qual tem por objetivo identificar as regiões de uma fonte de ruído que efetivamente contribuem para a potência sonora, filtrando, consequentemente, a parcela referente às ondas sonoras recirculantes e evanescentes. É apresentada a abordagem de Fourier para a obtenção da intensidade supersônica em fontes com geometrias separáveis e a formulação numérica existente para a obtenção de um equivalente à intensidade supersônica em fontes sonoras com geometrias arbitrárias. Este trabalho apresenta como principal contribuição original, uma técnica para o cálculo de um equivalente à intensidade supersônica, denominado aqui de intensidade acústica útil, capaz de identificar as regiões de uma superfície vibrante de geometria arbitrária que efetivamente contribuem para a potência sonora que será radiada. Ao contrário da formulação numérica existente, o modelo proposto é mais direto, totalmente formulado na superfície vibrante, onde a potência sonora é obtida através de um operador (uma matriz) que relaciona a potência sonora radiada com a distribuição de velocidade normal à superfície vibrante, obtida com o uso do método de elementos finitos. Tal operador, chamado aqui de operador de potência, é Hermitiano, fato crucial para a obtenção da intensidade acússtica útil, após a aplicação da decomposição em autovalores e autovetores no operador de potência, e do critério de truncamento proposto. Exemplos de aplicações da intensidade acústica útil em superfícies vibrantes com a geometria de uma placa, de um cilindro com tampas e de um silenciador automotivo são apresentados, e os resultados são comparados com os obtidos via intensidade supersônica (placa) e via técnica numérica existente (cilindro), evidenciando que a intensidade acústica útil traz, como benefício adicional, uma redução em relação ao tempo computacional quando comparada com a técnica numérica existente. / This work describes the theory necessary to obtain the greatness called supersonic intensity, which aims to identify the regions of a sound source that effectively contribute to the sound power radiated, filtering recirculating and evanescent sound waves. The Fourier approach to obtain the supersonic intensity in sources having separable geometries, and the existent numerical formulation to obtain an equivalent to supersonic intensity on noise sources with arbitrary geometry. This work presents a new numeric technique for the computation of the numerical equivalent to the supersonic acoustic intensity. The technique provides the identification of the regions of a noise source with arbitrary geometry that effectively contribute to the sound power radiated to the far field by filtering recirculating and evanescent sound waves. The proposed technique is entirely formulated on the vibrating surface. The acoustic power radiated is obtained through a numerical operator that relates it with the distribution of superficial normal velocity, which is obtained by the boundary element method. Such power operator, possesses the property of being Hermitian. The advantage of this characteristic is that their eigenvalues are real and their eigenvectors form an orthonormal set for the velocity distribution. It is applied to the power operator the decomposition in eigenvalues and eigenvectors, becoming possible to compute the numerical equivalent to the supersonic intensity, called here useful intensity, after applying a cutoff criterion to remove the non propagating components. Some numerical tests confirming the effectiveness of the convergence criterions are presented. Examples of the application of the useful intensity technique in vibrating surfaces such as a plate, a cylinder with flat caps and an automotive muffler are presented and the numerical results are discussed, showing that the useful intensity brings, as additional benefit, a reduction of the computational effort, when compared to existent numerical technique.
3

Mapeamento das regiões radiantes em placas retangulares vibrantes via método dos elementos de contorno com velocidade média e intensidade útil / Mapping of radiant regions in vibrating rectangular plates via average velocity boundary element method and useful intensity

Vera Lúcia Duarte Ferreira 25 July 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em engenharia, a modelagem computacional desempenha um papel importante na concepção de produtos e no desenvolvimento de técnicas de atenuação de ruído. Nesse contexto, esta tese investiga a intensidade acústica gerada pela radiação sonora de superfícies vibrantes. De modo específico, a pesquisa enfoca a identificação das regiões de uma fonte sonora que contribuem efetivamente para potência sonora radiada para o campo afastado, quando a frequência de excitação ocorre abaixo da frequência crítica de coincidência. São descritas as fundamentações teóricas de duas diferentes abordagens. A primeira delas, denominada intensidade supersônica (analítica) é calculada via transformadas de Fourier para fontes sonoras com geometrias separáveis. A segunda, denominada intensidade útil (numérica) é calculada através do método dos elementos de contorno clássico para fontes com geometrias arbitrárias. Em ambas, a identificação das regiões é feita pela filtragem das ondas não propagantes (evanescentes). O trabalho está centrado em duas propostas, a saber. A primeira delas, é a apresentação implementação e análise de uma nova técnica numérica para o cálculo da grandeza intensidade útil. Essa técnica constitui uma variante do método dos elementos de contorno (MEC), tendo como base o fato de as aproximações para as variáveis acústicas pressão e velocidade normal serem tomadas como constantes em cada elemento. E também no modo peculiar de obter a velocidade constante através da média de um certo número de velocidades interiores a cada elemento. Por esse motivo, a técnica recebe o nome de método de elemento de contorno com velocidade média (AVBEMAverage Velocity Boundary Element Method). A segunda, é a obtenção da solução forma fechada do campo de velocidade normal para placas retangulares com oito diferentes combinações de condições contorno clássicas. Então, a intensidade supersônica é estimada e comparada à intensidade acústica. Nos ensaios numéricos, a comparação da intensidade útil obtida via MEC clássico e via AVBEM é mostrada para ilustrar a eficiência computacional da técnica aqui proposta, que traz como benefício adicional o fato de poder ser utilizada uma malha menos refinada para as simulações e, consequentemente, economia significativa de recursos computacionais. / In engineering computational modeling plays an important role in product design and development techniques for noise attenuation. In such context, this thesis investigates the acoustic intensity generated by sound radiation from vibrating surfaces. Specifically, the research focuses on the identification that effectively contribute to the radiated sound power into the far-field, especially when the driven frequency occurs below the critical coincidence frequency. The theoretical formulations of two different approaches are described. The first one, called supersonic intensity (analytical) is calculated via Fourier transforms for noise sources with separable geometries. The second, called useful intensity (numerical) is calculated by the method of boundary elements to classic fonts with arbitrary geometries. In both, the identification of regions is done by filtering the non propagating waves (evanescent). The work is focused on the presentation, implementation and analysis of a new numerical technique for calculating the magnitude useful intensity. This technique is a variant of the method-boundary element (BEM), based on the fact that the approximations for the acoustic pressure and normal speed variables are taken as constant in each element. Also in particular way to obtain constant speed by mean of a number of speeds interior of each element. For this reason, the technique is called the Average Velocity Boundary Element Method . The closed form solution of the normal velocity field for rectangular plates in eight cases with distinct combinations of classical boundary conditions is also obtained. Then, the supersonic intensity is estimated and compared to the acoustic intensity. Numerical experiments are performed comparing to the useful intensity via the conventional BEM with theAVBEM in order to illustrate the positive computational features of the method. The numerical results indicate that the proposed method is much more computationally effcient than its standard BEM counterpart, it enabling the use of a coarser mesh.
4

Mapeamento das regiões radiantes em placas retangulares vibrantes via método dos elementos de contorno com velocidade média e intensidade útil / Mapping of radiant regions in vibrating rectangular plates via average velocity boundary element method and useful intensity

Vera Lúcia Duarte Ferreira 25 July 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em engenharia, a modelagem computacional desempenha um papel importante na concepção de produtos e no desenvolvimento de técnicas de atenuação de ruído. Nesse contexto, esta tese investiga a intensidade acústica gerada pela radiação sonora de superfícies vibrantes. De modo específico, a pesquisa enfoca a identificação das regiões de uma fonte sonora que contribuem efetivamente para potência sonora radiada para o campo afastado, quando a frequência de excitação ocorre abaixo da frequência crítica de coincidência. São descritas as fundamentações teóricas de duas diferentes abordagens. A primeira delas, denominada intensidade supersônica (analítica) é calculada via transformadas de Fourier para fontes sonoras com geometrias separáveis. A segunda, denominada intensidade útil (numérica) é calculada através do método dos elementos de contorno clássico para fontes com geometrias arbitrárias. Em ambas, a identificação das regiões é feita pela filtragem das ondas não propagantes (evanescentes). O trabalho está centrado em duas propostas, a saber. A primeira delas, é a apresentação implementação e análise de uma nova técnica numérica para o cálculo da grandeza intensidade útil. Essa técnica constitui uma variante do método dos elementos de contorno (MEC), tendo como base o fato de as aproximações para as variáveis acústicas pressão e velocidade normal serem tomadas como constantes em cada elemento. E também no modo peculiar de obter a velocidade constante através da média de um certo número de velocidades interiores a cada elemento. Por esse motivo, a técnica recebe o nome de método de elemento de contorno com velocidade média (AVBEMAverage Velocity Boundary Element Method). A segunda, é a obtenção da solução forma fechada do campo de velocidade normal para placas retangulares com oito diferentes combinações de condições contorno clássicas. Então, a intensidade supersônica é estimada e comparada à intensidade acústica. Nos ensaios numéricos, a comparação da intensidade útil obtida via MEC clássico e via AVBEM é mostrada para ilustrar a eficiência computacional da técnica aqui proposta, que traz como benefício adicional o fato de poder ser utilizada uma malha menos refinada para as simulações e, consequentemente, economia significativa de recursos computacionais. / In engineering computational modeling plays an important role in product design and development techniques for noise attenuation. In such context, this thesis investigates the acoustic intensity generated by sound radiation from vibrating surfaces. Specifically, the research focuses on the identification that effectively contribute to the radiated sound power into the far-field, especially when the driven frequency occurs below the critical coincidence frequency. The theoretical formulations of two different approaches are described. The first one, called supersonic intensity (analytical) is calculated via Fourier transforms for noise sources with separable geometries. The second, called useful intensity (numerical) is calculated by the method of boundary elements to classic fonts with arbitrary geometries. In both, the identification of regions is done by filtering the non propagating waves (evanescent). The work is focused on the presentation, implementation and analysis of a new numerical technique for calculating the magnitude useful intensity. This technique is a variant of the method-boundary element (BEM), based on the fact that the approximations for the acoustic pressure and normal speed variables are taken as constant in each element. Also in particular way to obtain constant speed by mean of a number of speeds interior of each element. For this reason, the technique is called the Average Velocity Boundary Element Method . The closed form solution of the normal velocity field for rectangular plates in eight cases with distinct combinations of classical boundary conditions is also obtained. Then, the supersonic intensity is estimated and compared to the acoustic intensity. Numerical experiments are performed comparing to the useful intensity via the conventional BEM with theAVBEM in order to illustrate the positive computational features of the method. The numerical results indicate that the proposed method is much more computationally effcient than its standard BEM counterpart, it enabling the use of a coarser mesh.

Page generated in 0.1319 seconds