• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel approaches for the modelling of heat flow in advanced welding processes

Flint, Thomas January 2016 (has links)
The transient temperature fields induced by welding processes largely determine the size of the fusion and heat-affected zones, the microstructures, residual stresses and distortion both in the vicinity of the weld and in the final component as a whole. An accurate prediction of these fields relies heavily on the representation of the welding heat source, both in space and in time. The double-ellipsoidal heat source model proposed by Goldak and co-workers has been widely used to simulate the heat transferred from an electric arc to a component and to compute the induced transient temperature fields. This double-ellipsoidal distribution has worked well for many welding applications, but it is less appropriate when representing the heat transfer at the base of a groove whose width is narrow in relation to its depth. Similarly the conical heat source models used to represent the electron beam welding process, when applied in keyhole mode, are less appropriate when the keyhole terminates within the component, such as in the case of a partial penetration weld. In this work, the double-ellipsoidal heat source model is extended, and alternatives presented, to account for a wider set of welding scenarios, including narrow weld groove geometries and keyhole welding scenarios. A series of mathematically robust novel heat source models is presented and the models are validated against experimental data obtained during the application of various welding processes to an important grade of pressure vessel steel, namely SA508 Grade 3 class 1 steel. The calculation of the transient temperature fields during welding is extremely computationally expensive using numerical methods. Where available, and appropriate, analytical solutions are presented for these novel welding heat source models, coupled with analytical methods for accounting for time dependent heat input rates, to not only reduce computational cost but also to achieve precise predictions of the temperature fields. This, in turn, has the potential to contribute to improvements in safety assessments on critical welded infrastructure through improved predictions for the evolution of microstructure, mechanical properties and the levels of residual stress and distortion in welded joints.
2

Secret Key Generation in the Multiterminal Source Model : Communication and Other Aspects

Mukherjee, Manuj January 2017 (has links) (PDF)
This dissertation is primarily concerned with the communication required to achieve secret key (SK) capacity in a multiterminal source model. The multiterminal source model introduced by Csiszár and Narayan consists of a group of remotely located terminals with access to correlated sources and a noiseless public channel. The terminals wish to secure their communication by agreeing upon a group secret key. The key agreement protocol involves communicating over the public channel, and agreeing upon an SK secured from eavesdroppers listening to the public communication. The SK capacity, i.e., the maximum rate of an SK that can be agreed upon by the terminals, has been characterized by Csiszár and Narayan. Their capacity-achieving key generation protocol involved terminals communicating to attain omniscience, i.e., every terminal gets to recover the sources of the other terminals. While this is a very general protocol, it often requires larger rates of public communication than is necessary to achieve SK capacity. The primary focus of this dissertation is to characterize the communication complexity, i.e., the minimum rate of public discussion needed to achieve SK capacity. A lower bound to communication complexity is derived for a general multiterminal source, although it turns out to be loose in general. While the minimum rate of communication for omniscience is always an upper bound to the communication complexity, we derive tighter upper bounds to communication complexity for a special class of multiterminal sources, namely, the hypergraphical sources. This upper bound yield a complete characterization of hypergraphical sources where communication for omniscience is a rate-optimal protocol for SK generation, i.e., the communication complexity equals the minimum rate of communication for omniscience. Another aspect of the public communication touched upon by this dissertation is the necessity of omnivocality, i.e., all terminals communicating, to achieve the SK capacity. It is well known that in two-terminal sources, only one terminal communicating success to generate a maximum rate secret key. However, we are able to show that for three or more terminals, omnivocality is indeed required to achieve SK capacity if a certain condition is met. For the specific case of three terminals, we show that this condition is also necessary to ensure omnivocality is essential in generating a SK of maximal rate. However, this condition is no longer necessary when there are four or more terminals. A certain notion of common information, namely, the Wyner common information, plays a central role in the communication complexity problem. This dissertation thus includes a study of multiparty versions of the two widely used notions of common information, namely, Wyner common information and Gács-Körner (GK) common information. While evaluating these quantities is difficult in general, we are able to derive explicit expressions for both types of common information in the case of hypergraphical sources. We also study fault-tolerant SK capacity in this dissertation. The maximum rate of SK that can be generated even if an arbitrary subset of terminals drops out is called a fault-tolerant SK capacity. Now, suppose we have a fixed number of pairwise SKs. How should one distribute them amongpairs of terminals, to ensure good fault tolerance behavior in generating a groupSK? We show that the distribution of the pairwise keys according to a Harary graph provides a certain degree of fault tolerance, and bounds are obtained on its fault-tolerant SK capacity.
3

Evaluation of Thermal Radiation Models for Fire Spread Between Objects

Fleury, Rob January 2010 (has links)
Fire spread between objects within a compartment is primarily due to the impingement of thermal radiation from the fire source. In order to estimate if or when a remote object from the fire will ignite, one must be able to quantify the radiative heat flux being received by the target. There are a variety of methods presented in the literature that attempt to calculate the thermal radiation to a target; each one based on assumptions about the fire. The performance of six of these methods, of varying complexity, is investigated in this research. This includes the common point source model, three different cylindrical models, a basic correlation and a planar model. In order to determine the performance of each method, the predictions made by the models were compared with actual measurements of radiant heat flux. This involved taking heat flux readings at numerous locations surrounding a propane gas burner. Different fire scenarios were represented by varying the burner geometry and heat release rate. Video recordings of the experiments were used to determine the mean flame heights using video image analysis software. After comparing the measured data with predictions made by the theoretical radiation methods, the point source model was found to be the best performing method on average. This was unexpected given the relative simplicity of the model in comparison to some of its counterparts. Additionally, the point source model proved to be the most robust of the six methods investigated, being least affected by the experimental variables. The Dayan and Tien method, one of the cylindrical models, was the second most accurate over the range of conditions tested in this work. Based on these findings, recommendations are made as to the most appropriate method for use in a radiation sub-model within an existing zone model software. The accuracy shown by the point source model, coupled with its ease of implementation, means that it should be suitable for such a use.
4

The Performance of Fractured Horizontal Well in Tight Gas Reservoir

Lin, Jiajing 2011 December 1900 (has links)
Horizontal wells have been used to increase reservoir recovery, especially in unconventional reservoirs, and hydraulic fracturing has been applied to further extend the contact with the reservoir to increase the efficiency of development. In the past, many models, analytical or numerical, were developed to describe the flow behavior in horizontal wells with fractures. Source solution is one of the analytical/semi-analytical approaches. To solve fractured well problems, source methods were advanced from point sources to volumetric source, and pressure change inside fractures was considered in the volumetric source method. This study aims at developing a method that can predict horizontal well performance and the model can also be applied to horizontal wells with multiple fractures in complex natural fracture networks. The method solves the problem by superposing a series of slab sources under transient or pseudosteady-state flow conditions. The principle of the method comprises the calculation of semi-analytical response of a rectilinear reservoir with closed outer boundaries. A statistically assigned fracture network is used in the study to represent natural fractures based on the spacing between fractures and fracture geometry. The multiple dominating hydraulic fractures are then added to the natural fracture system to build the physical model of the problem. Each of the hydraulic fractures is connected to the horizontal wellbore, and the natural fractures are connected to the hydraulic fractures through the network description. Each fracture, natural or hydraulically induced, is treated as a series of slab sources. The analytical solution of superposed slab sources provides the base of the approach, and the overall flow from each fracture and the effect between the fractures are modeled by applying superposition principle to all of the fractures. It is assumed that hydraulic fractures are the main fractures that connect with the wellbore and the natural fractures are branching fractures which only connect with the main fractures. The fluid inside of the branch fractures flows into the main fractures, and the fluid of the main fracture from both the reservoir and the branch fractures flows to the wellbore. Predicting well performance in a complex fracture network system is extremely challenged. The statistical nature of natural fracture networks changes the flow characteristic from that of a single linear fracture. Simply using the single fracture model for individual fracture, and then adding the flow from each fracture for the network could introduce significant error. This study provides a semi-analytical approach to estimate well performance in a complex fracture network system.
5

GLOBAL RESOURCE MODELLING OF THE CLIMATE, LAND, ENERGY AND WATER (CLEWS) NEXUS USING THE OPEN SOURCE ENERGY MODELLING SYSTEM (OSEMOSYS)

Weirich, Manuel January 2013 (has links)
The development of a global model incorporating Climate, Land, Energy and Water (CLEW) parameters and interconnections was undertaken using the Open Source Energy Modelling SYStem. The model was to be a simplistic representation of the nexus systems and include the most relevant mechanisms between them. Two separate modules on land use and materials were created and combined with an already existing energy module. Water and climate parameters were added to all modules and they were combined to the global CLEWs Base model. Three scenarios were run on the separate sector modules and the combined model. Results from the comparison of the separate and combined modules indicate that the CLEW approach is applicable even on a simplistic, highly aggregated scale. Differences in resource allocation were observed when the same parameters were run in the single sector modules and in the combined base model. However, to make the model provide a representative image of global resource conditions additional data and parameters will be required. The resulting global CLEWs model provides a wide range of potential applications and can be easily expanded. As an open source tool it could act as an educational instrument or for policy support and be adapted to different geographical boundaries and detail.
6

Style and process of magma intrusion based on combined ground deformation data in and around Sakurajima volcano, southern Kyushu, Japan / 複合地盤変動データに基づく桜島火山のマグマ貫入形態・過程

Hotta, Kohei 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19510号 / 理博第4170号 / 新制||理||1599(附属図書館) / 32546 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 井口 正人, 教授 平原 和朗, 教授 大倉 敬宏 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
7

Experimental evaluation of thermal response tests performed on borehole strings

Millar, Chantel January 2021 (has links)
This thesis investigates the validity of the standard thermal response test (TRT) results when performed on a series of boreholes (string). The typical TRT consists of subjecting a single borehole to a constant heat injection rate to obtain the temperature response in the ground which can then be used to determine the ground thermal conductivity. When completed on a single borehole, the results may be analyzed with the line source theory, since the assumption of a single line heat source is valid. For multiple boreholes, the assumption of a single line source becomes invalid if the spacing between the boreholes is small enough for borehole thermal interaction to occur. Moreover, for boreholes that are charged in series, heat transfer from the horizontal pipes that connect the vertical boreholes may also influence the ground thermal response. This thesis takes an in-depth look at the different factors that affect the results of TRTs performed on borehole strings. Different analysis methods are implemented to determine areas of improvement for determining the thermal conductivity of the soil surrounding the borehole string. For the analysis, the infinite line source (ILS) model and a model developed using TRNSYS 18 were used to determine the effective thermal conductivity. The results show that TRNSYS is unable to accurately model a TRT performed on a borehole string. The horizontal pipe model within TRNSYS proved to have significant fundamental issues, as the effective thermal conductivity is greatly underestimated with values of 1.2±0.1W/mK and the results of increasing the horizontal length both increased and decreased the effective thermal conductivities. The results from the ILS demonstrate that an effective thermal conductivity of 1.7±0.2W/mK is an appropriate estimate of the soil at the BTES field tested, as the borehole string with the furthest spacing between boreholes gave an effective thermal conductivity of 1.7W/mK. Performing multiple thermal response tests within the same BTES field also provided evidence of the need to implement multiple TRTs as common practise. The testing presented shows that the effective thermal conductivity can vary within ±0.2W/mK within the same relative location. With better knowledge of the thermal properties within the BTES field location comes the opportunity for improved planning of operation and control of thermal distribution within the field. This would be especially beneficial when dealing with seasonal BTES fields / Thesis / Master of Applied Science (MASc)
8

Isar Target Reconstruction Via Dipole Modeling

Nassib, Ali Hussein 18 May 2016 (has links)
No description available.
9

Investigation Of Source Parameters Of Earthquakes In Northern Sweden

González-Caneda, María January 2019 (has links)
By studying the frequency domain of seismic signals generated by earthquakes, the source parameters can be recovered, i.e., the seismic moment (M0) and the stress drop (Δσ). This method is an advantage especially since if the source parameters are calculated from the time domain a full waveform inversion is needed, therefore this procedure facilitates the computation. Besides, the moment magnitude (Mw) can be calculated from the seismic moment and, in turn, the local magnitude (ML) can be obtained by using an algorithm that matches different ranges of moment magnitude with their corresponding local magnitude. In the present thesis, small to moderate earthquakes in Northern Sweden have been used to develop a code that calculates the source parameters through the fitting of five different spectral models and, this way, discerns which model obtains the best determination of the parameters. These models have been chosen in a way that we can also extract information about the attenuation. The different models are; the Brune spectral model, Boatwright spectral model, Boatwright spectral model with a fixed fall-off rate, a general form of the spectral model with quality factor equal to 1000 and a general form of the spectral model with quality factor equal to 600. Among these models, the Boatwright model with fixed fall-off rate equal to 2, has been found to give the best fit to the data used in this thesis. This might be due to the regional conditions which are the low attenuation in the crust of northern Fennoscandia and the short hypocentral distances of the studied earthquakes. The earthquakes studied in the present thesis have shown a range of magnitudes from ML 4.2 to -0.2 with radius of an assumed circular fault ranging from 269 m to 66 m.
10

Developing and evaluating dose calculation models for verification of advanced radiotherapy

Olofsson, Jörgen January 2006 (has links)
A prerequisite for modern radiotherapy is the ability to accurately determine the absorbed dose (D) that is given to the patient. The subject of this thesis has been to develop and evaluate efficient dose calculation models for high-energy photon beams delivered by linear accelerators. Even though the considered calculation models are general, the work has been focused on quality assurance (QA) tools used to independently verify the dose for individual treatment plans. The purpose of this verification is to guarantee patient safety and to improve the treatment outcome. Furthermore, a vital part of this work has been to explore the prospect of estimating the dose calculation uncertainties associated with individual treatment setups. A discussion on how such uncertainty estimations can facilitate improved clinical QA procedures by providing appropriate action levels has also been included within the scope of this thesis. In order to enable efficient modelling of the physical phenomena that are involved in dose output calculations it is convenient to divide them into two main categories; the first one dealing with the radiation exiting the accelerator’s treatment head and a second one associated with the subsequent energy deposition processes. A multi-source model describing the distribution of energy fluence emitted from the treatment head per delivered monitor unit (MU) is presented and evaluated through comparisons with measurements in multiple photon beams and collimator settings. The calculations show close agreement with the extensive set of experimental data, generally within +/-1% of corresponding measurements. The energy (dose) deposition in the irradiated object has been modelled through a photon pencil kernel solely based on a beam quality index (TPR20,10). This model was evaluated in a similar manner as the multi-source model at three different treatment depths. A separate study was focused on the specific difficulties associated with dose calculations in points located at a distance from the central beam axis. Despite the minimal input data required to characterize individual photon beams, the accuracy proved to be very good when comparing the calculated results with experimental data. The evaluated calculation models were finally used to analyse how well the lateral dose distributions from typical megavoltage photon beams are optimized with respect to the resulting beam flatness characteristics. The results did not reveal any obvious reasons why different manufacturers should provide different lateral dose distributions. Furthermore, the performed lateral optimizations indicate that there is room for improved flatness performance for the investigated linear accelerators.

Page generated in 0.048 seconds