Spelling suggestions: "subject:"soustraction dde food"" "subject:"soustraction dde ford""
1 |
Banque de données et banc d'essai en détection de changementGoyette, Nil January 2013 (has links)
Les caméras de vidéosurveillance sont de plus en plus présentes dans notre société, à un point tel que les séquences vidéo sont souvent enregistrées sans être regardées par des agents de sécurité. Il convient donc de créer des algorithmes qui vont effectuer le même travail d'analyse que des surveillants humains. Bien qu'il y ait des inquiétudes au niveau de la vie privée, on peut envisager maintes applications, toutes au service de la société. La détection de changement est à la base de bon nombre d'applications en analyse vidéo. Elle consiste à détecter tout changement intéressant dans une séquence capturée par une caméra fixe. Bien que les méthodes gèrent mieux les difficultés inhérentes à ce problème, il n'y a pas encore de solution définitive à la détection de changement. Avec des milliers de méthodes disponibles dans la littérature, il est présentement très difficile, voire impossible, de comparer ces méthodes et d'identifier lesquelles répondent mieux aux différents défis. Les auteurs font face au même problème lorsqu'ils désirent se comparer à l'état de l'art. Pour faire face à cette situation, nous avons créé un banc d'essai en détection de changement. Ceci inclut la création d'une banque de données d'envergure, d'une méthode d'évaluation quantitative équitable et d'un site web pour consulter le classement et télé-charger les résultats de segmentation des compétiteurs. Des outils et de la documentation pour utiliser ces derniers sont aussi offerts, le tout accessible gratuitement et simplement sur Internet. Comme le but est de devenir le standard de facto , le projet est suffisamment complet et intéressant pour convaincre la communauté scientifique de l'adopter. Ce faisant, nous avons créé notre propre programme d'annotation libre, rassemblé et programmé une dizaine de méthodes de détection de changement, puis déterminé les meilleures méthodes et les difficultés auxquelles la communauté devrait s'attaquer au cours des prochaines années. L'atelier organisé à CVPR 2012, le grand nombre de soumissions et le bon achalandage du site sont des indicateurs encourageants quant à la réussite de notre travail. Il est encore trop tôt pour confirmer quoi que ce soit car l'adoption d'un nouveau standard prend du temps, mais notre pronostic est positif.
|
2 |
Détection d'objets stationnaires par une paire de caméras PTZ / Stationary object detection by a pair of ptz camerasGuillot, Constant 23 January 2012 (has links)
L’analyse vidéo pour la vidéo-surveillance nécessite d’avoir une bonne résolution pour pouvoir analyser les flux vidéo avec un maximum de robustesse. Dans le contexte de la détection d’objets stationnaires dans les grandes zones, telles que les parkings, le compromis entre la largeur du champ d’observation et la bonne résolution est difficile avec un nombre limité de caméras. Nous allons utiliser une paire de caméras à focale variable de type Pan-Tilt-Zoom (PTZ). Les caméras parcourent un ensemble de positions (pan, tilt, zoom) prédéfinies afin de couvrir l’ensemble de la scène à une résolution adaptée. Chacune de ces positions peut être vue comme une caméra stationnaire à très faible taux de rafraîchissement. Dans un premier temps notre approche considère les positions des PTZ comme des caméras indépendantes. Une soustraction de fond robuste aux changements de luminosité reposant sur une grille de descripteurs SURF est effectuée pour séparer le fond du premier plan. La détection des objets stationnaires est effectuée par ré-identification des descripteurs à un modèle du premier plan. Dans un deuxième temps afin de filtrer certaines fausses alarmes et pouvoir localiser les objets en 3D une phase de mise en correspondance des silhouettes entre les deux caméras et effectuée. Les silhouettes des objets stationnaires sont placées dans un repère commun aux deux caméras en coordonnées rectifiées. Afin de pouvoir gérer les erreurs de segmentation, des groupes de silhouettes s’expliquant mutuellement et provenant des deux caméras sont alors formés. Chacun de ces groupes (le plus souvent constitué d’une silhouette de chaque caméra, mais parfois plus) correspond à un objet stationnaire. La triangulation des points frontière haut et bas permet ensuite d’accéder à sa localisation 3D et à sa taille. / Video analysis for video surveillance needs a good resolution in order to analyse video streams with a maximum of robustness. In the context of stationary object detection in wide areas a good compromise between a limited number of cameras and a high coverage of the area is hard to achieve. Here we use a pair of Pan-Tilt-Zoom (PTZ) cameras whose parameter (pan, tilt and zoom) can change. The cameras go through a predefined set of parameters chosen such that the entire scene is covered at an adapted resolution. For each triplet of parameters a camera can be assimilated to a stationary camera with a very low frame-rate and is referred to as a view. First each view is considered independently. A background subtraction algorithm, robust to changes in illumination and based on a grid of SURF descriptors, is proposed in order to separate background from foreground. Then the detection and segmentation of stationary objects is done by reidentifying foreground descriptor to a foreground model. Then in order to filter out false alarms and to localise the objects in the3D world, the detected stationary silhouettes are matched between the two cameras. To remain robust to segmentation errors, instead of matched a silhouette to another, groups of silhouettes from the two cameras and mutually explaining each other are matched. Each of the groups then correspond to a stationary object. Finally the triangulation of the top and bottom points of the silhouettes gives an estimation of the position and size of the object.
|
3 |
Information visuelle multirésolution pour l'estimation de la vitesse du trafic routierGodin, Olivier January 2013 (has links)
La hausse du taux d'occupation des routes rend nécessaire l'utilisation de dispositifs visant à surveiller et analyser la circulation des utilisateurs du réseau routier. Bien souvent, des réseaux de surveillance par caméras sont déjà en place sur les routes. L'information visuelle est donc déjà disponible, mais est peu utilisée pour l'analyse automatisée du trafic. L'objectif de ce travail est de mettre au point une méthode automatisée basée sur l'information visuelle multirésolution permettant d'évaluer la fluidité de la circulation à plusieurs niveaux de précision. En effet, si une analyse manuelle de l'information visuelle peut permettre de dégager certaines tendances sur l'état du trafic routier, une approche automatisée permettra d'évaluer plus précisément plusieurs données sur le mouvement des véhicules. En tout temps, le déplacement moyen dans la scène sera évalué, afin d'obtenir un indice de fluidité global. Tant que la circulation demeure fluide, il n'est pas nécessaire d'estimer la vitesse du trafic avec plus de précision. Toutefois, si cet indice descend sous un certain seuil, l'analyse sera raffinée pour fournir le déplacement moyen par direction, en utilisant une résolution deux fois supérieure à la précédente. Finalement, à partir des images à pleine résolution, il sera possible d'obtenir une mesure du déplacement de chaque véhicule.
|
4 |
Détection d'objets stationnaires par une paire de caméras PTZGuillot, Constant 23 January 2012 (has links) (PDF)
L'analyse vidéo pour la vidéo-surveillance nécessite d'avoir une bonne résolution pour pouvoir analyser les flux vidéo avec un maximum de robustesse. Dans le contexte de la détection d'objets stationnaires dans les grandes zones, telles que les parkings, le compromis entre la largeur du champ d'observation et la bonne résolution est difficile avec un nombre limité de caméras. Nous allons utiliser une paire de caméras à focale variable de type Pan-Tilt-Zoom (PTZ). Les caméras parcourent un ensemble de positions (pan, tilt, zoom) prédéfinies afin de couvrir l'ensemble de la scène à une résolution adaptée. Chacune de ces positions peut être vue comme une caméra stationnaire à très faible taux de rafraîchissement. Dans un premier temps notre approche considère les positions des PTZ comme des caméras indépendantes. Une soustraction de fond robuste aux changements de luminosité reposant sur une grille de descripteurs SURF est effectuée pour séparer le fond du premier plan. La détection des objets stationnaires est effectuée par ré-identification des descripteurs à un modèle du premier plan. Dans un deuxième temps afin de filtrer certaines fausses alarmes et pouvoir localiser les objets en 3D une phase de mise en correspondance des silhouettes entre les deux caméras et effectuée. Les silhouettes des objets stationnaires sont placées dans un repère commun aux deux caméras en coordonnées rectifiées. Afin de pouvoir gérer les erreurs de segmentation, des groupes de silhouettes s'expliquant mutuellement et provenant des deux caméras sont alors formés. Chacun de ces groupes (le plus souvent constitué d'une silhouette de chaque caméra, mais parfois plus) correspond à un objet stationnaire. La triangulation des points frontière haut et bas permet ensuite d'accéder à sa localisation 3D et à sa taille.
|
5 |
Algorithmes adaptatifs d'estimation du fond pour la détection des objets mobiles dans les séquences vidéosNghiem, Anh-Tuan 09 June 2010 (has links) (PDF)
Dans cette thèse, nous nous intéressons à la détection d'objets mobiles dans des séquences vidéo. En particulier, nous proposons une nouvelle méthode d'estimation du fond qui peut s'adapter aux différentes variations de la scène (ex. changements d'illumination, du fond). Cette méthode est composée d'un algorithme de soustraction du fond pour détecter les pixels du fond et d'un algorithme de post-traitement pour éliminer les changements d'illumination tels que les ombres des objets mobiles. Pour que cette méthode puisse s'adapter à une scène dynamique, nous proposons un contrôleur avec deux stratégies d'adaptation. La première stratégie supervise l'algorithme de soustraction du fond pour mettre à jour la représentation du fond en fonction du type d'objets détectés et des conditions d'illumination. Cette stratégie permet aux algorithmes de soustraction du fond de résoudre des problèmes concernant des petits bruits, des changements soudains d'illumination, la gestion des objets stationnaires, et aussi la détection des objets d'intérêt quand ils s'arrêtent de bouger. La deuxième stratégie règle les valeurs des paramètres de l'algorithme de soustraction du fond pour qu'il puisse s'adapter aux conditions courantes de la scène telles que le niveau de bruit. Pour atteindre ces objectifs, le contrôleur utilise les résultats des tâches de classification et de suivi, les informations diverses des algorithmes (ex. la sémantique des paramètres), ainsi que la nature de la scène observée (ex. scènes intérieures ou extérieures) . L'algorithme de soustraction du fond proposé est une extension du modèle de Mélange de Gaussiennes et il prend en compte les caractéristiques de la scène tels que les mouvements du fond et les changements dynamiques du fond. Cet algorithme propose également une nouvelle méthode pour mieux estimer la moyenne et l'écart type des distributions gaussiennes dans la représentation du fond. L'étape de post-traitement consiste en un algorithme pour supprimer les changements d'illumination à l'aide d'un nouvel espace de couleurs. Cet espace de couleurs est robuste aux changements d'illumination, ainsi que des irrégularités de caméras (la balance de blanc, la transformation non-linéaire lorsque l'intensité de lumière est faible par exemple). Cette méthode a été validée dans la base de données publiques ETISEO et dans une vidéo d'une heure du projet GERHOME.
|
6 |
Modèle du corps humain pour le suivi de gestes en monoculaireNoriega, Philippe 11 October 2007 (has links) (PDF)
L'estimation de la pose du corps humain ou son suivi grâce à la vision par ordinateur se heurte à la diffi culté d'explorer un espace de grande dimension. Les approches par apprentissage et particulièrement celles qui font appel aux régressions vers des espaces de dimension réduits comme les LLE [RS00] ou les GPLVM [Law03] permettent de résoudre cette diffi culté dans le cas de gestes cycliques [UFF06] sans parvenir à généraliser le suivi pour des poses quelconques. D'autres techniques procèdent directement par la comparaison de l'image test avec une base d'apprentissage. Dans cet esprit, le PSH [SVD03] permet d'identi fier rapidement un ensemble de poses similaires dans une grande base de données. Cependant, même en intégrant des techniques d'extrapolation qui permettent de générer d'autres poses à partir de celles apprises, les approches uniquement basées sur l'apprentissage ne parviennent généralement pas à couvrir de façon assez dense l'espace des poses [TSDD06]. D'autres voies consistent à mettre en oeuvre une méthode déterministe ou stochastique. Les méthodes déterministes [PF03] fournissent souvent une solution sous-optimale en restant piégées sur un optimum local du fait des ambiguïtés issues de la vision monoculaire. Les approches stochastiques tentent d'explorer la probabilité a posteriori mais là encore, la grande dimension de l'espace des poses, notamment dans le cas des méthodes à base de simulation par échantillonnage, exige de multiplier le nombre des tirages a n d'avoir une chance d'explorer le mode dominant. Une solution intéressante consiste à utiliser un modèle de corps à membres indépendants [SBR+04] pour restreindre l'exploration aux sous espaces dé nis par les paramètres de chacun des membres. L'infl uence d'un membre sur les autres s'exprime grâce à la propagation des croyances [KFL01] pour fournir une solution cohérente. Dans ce travail de thèse, cette dernière solution est retenue en l'associant au fi ltre à particules pour générer un espace discret où s'e ectue la propagation des croyances [BCMC06]. Ce procédé est préférable à la modélisation paramétrique des messages par un échantillonneur de Gibbs, un procédé coûteux en ressources dérivé de l'algorithme PAMPAS [Isa03]. Parallèlement à cette solution, le développement d'un suivi robuste du haut du corps, même en 2D [NB07b], exige une fusion de plusieurs indices extraits de l'image. La vraisemblance des hypothèses émises vis-à-vis de l'image est évaluée à partir d'indices tirés des gradients et de la couleur combinés avec une soustraction de fond [NB06] et une détection du mouvement. L'interprétation de la profondeur pour le passage en 3D constitue une di fficulté majeure du suivi monoculaire. La fusion d'indices évoquée précédemment devient insu sante pour contraindre la pose. Cependant, du fait des contraintes articulaires, l'espace réel des poses occupe un sous-espace très réduit dans l'espace théorique. Le codage de ces contraintes dans l'étape de propagation des croyances associé à la fusion d'indices permet alors d'aboutir à de bonnes performances, même dans les cas d'environnements non contraints (lumière, vêtements...) [NB07a]. Une meilleure gestion des occultations est mise en oeuvre en ajoutant un terme de compatibilité des hypothèses basé sur l'apprentissage. Avec le modèle utilisé [SBR+04], ce sont des membres indépendants plutôt que des poses complètes qui sont stockées dans la base d'apprentissage. Ceci permet d'obtenir une couverture satisfaisante de l'espace des poses avec un nombre raisonnable d'exemples appris. La propagation des croyances assure un assemblage cohérent des membres pour arriver au résultat et le processus de sélection des exemples dans la base peut-être accéléré grâce au PSH [SVD03].
|
7 |
Robust low-rank and sparse decomposition for moving object detection : from matrices to tensors / Détection d’objets mobiles dans des vidéos par décomposition en rang faible et parcimonieuse : de matrices à tenseursCordolino Sobral, Andrews 11 May 2017 (has links)
Dans ce manuscrit de thèse, nous introduisons les avancées récentes sur la décomposition en matrices (et tenseurs) de rang faible et parcimonieuse ainsi que les contributions pour faire face aux principaux problèmes dans ce domaine. Nous présentons d’abord un aperçu des méthodes matricielles et tensorielles les plus récentes ainsi que ses applications sur la modélisation d’arrière-plan et la segmentation du premier plan. Ensuite, nous abordons le problème de l’initialisation du modèle de fond comme un processus de reconstruction à partir de données manquantes ou corrompues. Une nouvelle méthodologie est présentée montrant un potentiel intéressant pour l’initialisation de la modélisation du fond dans le cadre de VSI. Par la suite, nous proposons une version « double contrainte » de l’ACP robuste pour améliorer la détection de premier plan en milieu marin dans des applications de vidéo-surveillance automatisées. Nous avons aussi développé deux algorithmes incrémentaux basés sur tenseurs afin d’effectuer une séparation entre le fond et le premier plan à partir de données multidimensionnelles. Ces deux travaux abordent le problème de la décomposition de rang faible et parcimonieuse sur des tenseurs. A la fin, nous présentons un travail particulier réalisé en conjonction avec le Centre de Vision Informatique (CVC) de l’Université Autonome de Barcelone (UAB). / This thesis introduces the recent advances on decomposition into low-rank plus sparse matrices and tensors, as well as the main contributions to face the principal issues in moving object detection. First, we present an overview of the state-of-the-art methods for low-rank and sparse decomposition, as well as their application to background modeling and foreground segmentation tasks. Next, we address the problem of background model initialization as a reconstruction process from missing/corrupted data. A novel methodology is presented showing an attractive potential for background modeling initialization in video surveillance. Subsequently, we propose a double-constrained version of robust principal component analysis to improve the foreground detection in maritime environments for automated video-surveillance applications. The algorithm makes use of double constraints extracted from spatial saliency maps to enhance object foreground detection in dynamic scenes. We also developed two incremental tensor-based algorithms in order to perform background/foreground separation from multidimensional streaming data. These works address the problem of low-rank and sparse decomposition on tensors. Finally, we present a particular work realized in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB).
|
8 |
Suivi visuel d'objets dans un réseau de caméras intelligentes embarquées / Visual multi-object tracking in a network of embedded smart camerasDziri, Aziz 30 October 2015 (has links)
Le suivi d’objets est de plus en plus utilisé dans les applications de vision par ordinateur. Compte tenu des exigences des applications en termes de performance, du temps de traitement, de la consommation d’énergie et de la facilité du déploiement des systèmes de suivi, l’utilisation des architectures embarquées de calcul devient primordiale. Dans cette thèse, nous avons conçu un système de suivi d’objets pouvant fonctionner en temps réel sur une caméra intelligente de faible coût et de faible consommation équipée d’un processeur embarqué ayant une architecture légère en ressources de calcul. Le système a été étendu pour le suivi d’objets dans un réseau de caméras avec des champs de vision non-recouvrant. La chaîne algorithmique est composée d’un étage de détection basé sur la soustraction de fond et d’un étage de suivi utilisant un algorithme probabiliste Gaussian Mixture Probability Hypothesis Density (GMPHD). La méthode de soustraction de fond que nous avons proposée combine le résultat fournie par la méthode Zipfian Sigma-Delta avec l’information du gradient de l’image d’entrée dans le but d’assurer une bonne détection avec une faible complexité. Le résultat de soustraction est traité par un algorithme d’analyse des composantes connectées afin d’extraire les caractéristiques des objets en mouvement. Les caractéristiques constituent les observations d’une version améliorée du filtre GMPHD. En effet, le filtre GMPHD original ne traite pas les occultations se produisant entre les objets. Nous avons donc intégré deux modules dans le filtre GMPHD pour la gestion des occultations. Quand aucune occultation n’est détectée, les caractéristiques de mouvement des objets sont utilisées pour le suivi. Dans le cas d’une occultation, les caractéristiques d’apparence des objets, représentées par des histogrammes en niveau de gris sont sauvegardées et utilisées pour la ré-identification à la fin de l’occultation. Par la suite, la chaîne de suivi développée a été optimisée et implémentée sur une caméra intelligente embarquée composée de la carte Raspberry Pi version 1 et du module caméra RaspiCam. Les résultats obtenus montrent une qualité de suivi proche des méthodes de l’état de l’art et une cadence d’images de 15 − 30 fps sur la caméra intelligente selon la résolution des images. Dans la deuxième partie de la thèse, nous avons conçu un système distribué de suivi multi-objet pour un réseau de caméras avec des champs non recouvrants. Le système prend en considération que chaque caméra exécute un filtre GMPHD. Le système est basé sur une approche probabiliste qui modélise la correspondance entre les objets par une probabilité d’apparence et une probabilité spatio-temporelle. L’apparence d’un objet est représentée par un vecteur de m éléments qui peut être considéré comme un histogramme. La caractéristique spatio-temporelle est représentée par le temps de transition des objets et la probabilité de transition d’un objet d’une région d’entrée-sortie à une autre. Le temps de transition est modélisé par une loi normale dont la moyenne et la variance sont supposées être connues. L’aspect distribué de l’approche proposée assure un suivi avec peu de communication entre les noeuds du réseau. L’approche a été testée en simulation et sa complexité a été analysée. Les résultats obtenus sont prometteurs pour le fonctionnement de l’approche dans un réseau de caméras intelligentes réel. / Multi-object tracking constitutes a major step in several computer vision applications. The requirements of these applications in terms of performance, processing time, energy consumption and the ease of deployment of a visual tracking system, make the use of low power embedded platforms essential. In this thesis, we designed a multi-object tracking system that achieves real time processing on a low cost and a low power embedded smart camera. The tracking pipeline was extended to work in a network of cameras with nonoverlapping field of views. The tracking pipeline is composed of a detection module based on a background subtraction method and on a tracker using the probabilistic Gaussian Mixture Probability Hypothesis Density (GMPHD) filter. The background subtraction, we developed, is a combination of the segmentation resulted from the Zipfian Sigma-Delta method with the gradient of the input image. This combination allows reliable detection with low computing complexity. The output of the background subtraction is processed using a connected components analysis algorithm to extract the features of moving objects. The features are used as input to an improved version of GMPHD filter. Indeed, the original GMPHD do not manage occlusion problems. We integrated two new modules in GMPHD filter to handle occlusions between objects. If there are no occlusions, the motion feature of objects is used for tracking. When an occlusion is detected, the appearance features of the objects are saved to be used for re-identification at the end of the occlusion. The proposed tracking pipeline was optimized and implemented on an embedded smart camera composed of the Raspberry Pi version 1 board and the camera module RaspiCam. The results show that besides the low complexity of the pipeline, the tracking quality of our method is close to the stat of the art methods. A frame rate of 15 − 30 was achieved on the smart camera depending on the image resolution. In the second part of the thesis, we designed a distributed approach for multi-object tracking in a network of non-overlapping cameras. The approach was developed based on the fact that each camera in the network runs a GMPHD filter as a tracker. Our approach is based on a probabilistic formulation that models the correspondences between objects as an appearance probability and space-time probability. The appearance of an object is represented by a vector of m dimension, which can be considered as a histogram. The space-time features are represented by the transition time between two input-output regions in the network and the transition probability from a region to another. Transition time is modeled as a Gaussian distribution with known mean and covariance. The distributed aspect of the proposed approach allows a tracking over the network with few communications between the cameras. Several simulations were performed to validate the approach. The obtained results are promising for the use of this approach in a real network of smart cameras.
|
9 |
Recherche et étude de transitions de liaison entre les puits super- et normalement déformés dans le noyau 151TbROBIN, Jérôme 18 December 2003 (has links) (PDF)
Si le phénomène de superdéformation a été maintes fois mis en évidence dans de diverses et nombreuses régions de masse, pour la majeure partie des bandes superdéformées découvertes, principalement dans la région de masse A ~ 150, l'énergie d'excitation et le moment angulaire de leurs états superdéformés ne sont toutefois pas fixés. Nous avons donc entrepris à l'aide du multidétecteur EUROBALL IV situé à l'Institut de Recherches Subatomiques de Strasbourg, la recherche et l'étude de transitions de liaison entre les puits super- et normalement déformés dans le noyau 151Tb. De plus, ce noyau présente la particularité de posséder une bande superdéformée excitée identique à celle de la bande yrast du noyau 152Dy, récemment reliée aux états normalement déformés. Pour étendre notre étude comparative avec le noyau 152Dy, présentant une coexistence de formes dans le premier puits de potentiel, nous avons également mené la recherche de bandes rotationnelles de nature collective à déformation allongée mais modérée, coexistant avec la structure à déformation aplatie du noyau 151Tb. La découverte de nouvelles bandes superdéformées dans les isotopes 151,152Tb, l'extension à faible et haut moments angulaires des bandes précédemment connues et la réalisation de calculs de champ moyen avec un potentiel de Woods-Saxon déformé ont contribué à approfondir notre connaissance aussi bien qu'à soulever de nouvelles questions quant aux assignations de configuration d'orbitales de ces bandes.
|
10 |
Suivi visuel d'objets dans un réseau de caméras intelligentes : application au systèmes de manutention automatisés / Multiple object tracking on smart cameras : application to automated handling systemsBenamara, Mohamed Adel 19 December 2018 (has links)
L’intralogistique (ou logistique interne) s’intéresse au traitement et à l’optimisation des flux physiques au sein des entrepôts, centres de distribution et usines. Les systèmes de manutention automatisés sont au cœur de la logistique interne de plusieurs industries comme le commerce en ligne, la messagerie postale, la grande distribution, l’industrie manufacturière, le transport aéroportuaire, etc. Ces équipements composés de lignes de convoyage haute cadence permettent un transport sûr et fiable d’un volume considérable de biens et de marchandises tout en réduisant les coûts.L’automatisation de l’acheminement des flux physiques par les systèmes de manutention repose sur l’identification et le suivi en temps réel des charges transportées. Dans cette thèse, nous explorons une solution de suivi qui emploie un réseau de caméras intelligentes à champs recouvrants. L’objectif final étant de fournir l’information de suivi sur les charges transportées pour le pilotage d’un système de manutention.Le suivi d’objets est un problème fondamental de la vision par ordinateur qui a de nombreuses applications comme la vidéosurveillance, la robotique, les voitures autonomes, etc. Nous avons intégré plusieurs briques de base issues de la vidéosurveillance et traditionnellement appliquées aux scènes de surveillance automobile ou de surveillance des activités humaines pour constituer une chaine de suivi de référence. Cette chaine d’analyse vidéo étalon nous a permis de caractériser des hypothèses propres au convoyage d’objet. Nous proposons dans cette thèse d’incorporer cette connaissance métier dans la chaine de suivi pour en améliorer les performances. Nous avons, notamment pris en compte, dans l’étape de segmentation des images, le fait que les objets doivent pouvoir s’arrêter sans pour autant être intégrés aux modèles d’arrière-plan. Nous avons également exploité la régularité des trajectoires des objets convoyés dans les installations, permettant d’améliorer les modèles prédictifs de la position et de la vitesse des objets, dans les étapes de suivi. Enfin, nous avons intégré des contraintes de stricte monotonie dans l’ordre des colis sur le convoyeur, contraintes qui n’existent pas dans les scènes généralistes, pour ré-identifier les objets dans les situations où ils sont proches des eux les autres.Nous nous sommes par ailleurs attelés à un problème pratique d’optimisation des performances sur l’architecture multi-cœurs couplée aux caméras intelligentes. Dans ce cadre, nous avons a mis en place un apprentissage dynamique de la zone de l’image contenant le convoyeur. Cette zone d’intérêt nous a permis de limiter la mise à jour du modèle de fond à cette seule zone. Nous avons, par la suite, proposé une stratégie de parallélisation qui partitionne de manière adaptative cette région d’intérêt de l’image, afin d’équilibrer au mieux la charge de travail entre les différents cœurs de l’architecture des caméras intelligentes.Nous avons également traité la problématique du suivi sur plusieurs caméras. Nous avons proposé une approche basée sur un système de composition d’évènements. Cette approche nous a permis de fusionner les données de suivi local pour former les trajectoires globales des colis, tout en intégrant des informations issues du processus métier, par exemple la saisie de l’information de destination par des opérateurs sur un terminal avant la dépose des colis. Nous avons validé cette approche sur un système de manutention mis en place dans un centre de tri postal de grande envergure. Le réseau de caméras déployé est composé de 32 caméras qui assurent le suivi de plus de 400.000 colis/jour sur des lignes de dépose. Le taux d’erreur du suivi obtenu est inférieur à 1 colis sur 1000 (0,1%). / Intralogistics (or internal logistics) focuses on the management and optimization of internal production and distribution processes within warehouses, distribution centers, and factories. Automated handling systems play a crucial role in the internal logistics of several industries such as e-commerce, postal messaging, retail, manufacturing, airport transport, etc. These systems are composed by multiple high-speed conveyor lines that provide safe and reliable transportation of a large volume of goods and merchandise while reducing costs.The automation of the conveying process relies on the identification and the real-time tracking of the transported loads. In this thesis, we designed a tracking solution that employs a network of smart cameras with an overlapping field of view. The goal is to provide tracking information to control an automated handling system.Multiple object tracking is a fundamental problem of computer vision that has many applications such as video surveillance, robotics, autonomous cars, etc. We integrated several building blocks traditionally applied to traffic surveillance or human activities monitoring to constitute a tracking pipeline. We used this baseline tracking pipeline to characterize contextual scene information proper to the conveying scenario. We integrated this contextual information to the tracking pipeline to enhance the performance. In particular, we took into account the state of moving objects that become stationary in the background subtraction step to prevent their absorption to the background model. We have also exploited the regularity of objects trajectory to enhance the motion model associated with the tracked objects. Finally, we integrated the precedence ordering constraint among the conveyed object to reidentify them when they are close to each other.We have also tackled practical problems related to the optimization the execution of the proposed tracking problem in the multi-core architectures of smart cameras. In particular, we proposed a dynamic learning process that extracts the region of the image that corresponds to the conveyor lines. We reduced the number of the processed pixel by restricting the processing to this region of interest. We also proposed a parallelization strategy that adaptively partitions this region of interest of the image, in order to balance the workload between the different cores of the smart cameras.Finally, we proposed a multiple cameras tracking algorithms based on event composition. This approach fuses the local tracking generated by the smart cameras to form global object trajectories and information from third party systems such as the destination of the object entered by operators on a terminal. We validated the proposed approach for the control of a sorting system deployed in a postal distribution warehouse. A network of cameras composed of 32 cameras tracks more than 400.000 parcel/day in injections lines. The tracking error rate is less than 1 parcel in a 1000 (0.1%).
|
Page generated in 0.1416 seconds