• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Portfolio of original electroacoustic compositions

Saul, Daniel January 2016 (has links)
This commentary accompanies the portfolio of electroacoustic works realised at the NOVARS Research Centre, and intends to provide insight into methodologies for acousmatic composition as researched at the University of Manchester between 2013 and 2016. Six compositions are presented in order of realisation, as follows: Frictions/Storms, Rise, Glitches/Trajectories, Transmissions/Intercepts, Reductions/Expanses, and Iteration/Banger. An analysis of each work in relation to research-specific topics is provided, adopting Denis Smalley's concepts of spectromorphology and space-form as appropriate syntax in the elaboration of compositional methodologies and overall outcomes. The research focuses primarily on the appropriation of transformed and synthesised sound materials in acousmatic spatial composition. Resulting works are intended for presentation in concert via the practice of live sound diffusion performance. The portfolio documents an arc of development working in fixed media formats incorporating live electronics processes into the realisation of multi- channel compositions, to finally arrive at a methodological merging of fixed media studio composition and live electronics performance practices. Additional supplementary materials in support of the portfolio and commentary are provided including Max coding patches, video tutorials, technical information and related audio materials.
2

Uma caracterizaÃÃo do toro com curvatura mÃdia constante em formas espaciais / A characterization of tori with constant mean curvature in space forms.

Edno dos Santos Sousa 15 July 2008 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Nesta dissertaÃÃo fazemos um estudo de geometria das superfÃcies isometricamente imersas numa forma espacial tridimensional impondo algumas condiÃÃes sobre as curvaturas mÃdia e gaussiana. Se a curvatura à nÃo positiva prova-se que a superfÃcie à uma esfera, um produto de cÃrculos ou um cilindro. TambÃm à provado que se uma superfÃcie localmente H-deformÃvel à um toro, entÃo sua curvatura mÃdia à constante. / In this dissertation we study the geometry of surfaces isometrically immersed in a 3-dimensional space form imposing some conditions on its mean and gaussian curvature. If the gaussian curvature is non-positive we prove that the surface is a sphere, a product of circles or a cylinder. It is also proved that if a surface locally H-deformable is a torus; then it mean curvature is constant.
3

Rigidez de métricas críticas para funcionais riemannianos. / Rigidity of critical metrics for functional riemannians

Silva, Adam Oliveira da 15 September 2017 (has links)
SILVA, Adam Oliveira da. Rigidez de métricas críticas para funcionais riemannianos. 2017. 78 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T19:08:04Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 481005 bytes, checksum: 2bdfc6ab68b042a5cfd4f67caf1e21e4 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Bom dia, Estou devolvendo a Tese de ADAM OLIVEIRA DA SILVA, para que o arquivo seja substituído, pois o aluno já veio na BCM e orientei quais eram as correções a serem feitas. Atenciosamente, on 2017-09-20T14:03:26Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-20T16:47:21Z No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:26:34Z (GMT) No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) / Made available in DSpace on 2017-09-21T12:26:35Z (GMT). No. of bitstreams: 1 2017_tese_aosilva.pdf: 480774 bytes, checksum: a1267dd82f8a82a19f79902004e1afb5 (MD5) Previous issue date: 2017-09-15 / The aim of this work is to study metrics that are critical points for some Riemannian functionals. In the first part, we investigate critical metrics for functionals which are quadratic in the curvature on closed Riemannian manifolds. It is known that space form metrics are critical points for these functionals, denoted by F t,s (g). Moreover, when s = 0, always Einstein metrics are critical to F t (g). We proved that under some conditions the converse is true. For instance, among others results, we prove that if n ≥ 5 and g is a Bach-flat critical metric to F −n/4(n−1) , with second elementary symmetric function of the Schouten tensor σ 2 (A) > 0, then g should be Einstein. Furthermore, we show that a locally conformally flat critical metric with some additional conditions are space form metrics. In the second part, we study the critical metrics to volume functional on compact Riemannian manifolds with connected smooth boundary. We call such critical points of Miao-Tam critical metrics due to the variational study making by Miao and Tam (2009). In this work, we show that the geodesics balls in space forms Rn , Sn and Hn have the maximum possible boundary volume among Miao-Tam critical metrics with connected boundary provided that the boundary be an Einstein manifold. In the same spirit, we also extend a rigidity theorem due to Boucher et al. (1984) and Shen (1997) to n-dimensional static metrics with positive constant scalar curvature, which give us another way to get a partial answer to the Cosmic no-hair conjecture already obtained by Chrusciel (2003). / Este trabalho tem como principal objetivo estudar métricas que são pontos críticos de alguns funcionais Riemannianos. Na primeira parte, investigaremos métricas críticas de funcionais que são quadráticos na curvatura sobre variedades Riemannianas fechadas. É de conhecimento que métricas tipo formas espaciais são pontos críticos para tais funcionais, denotados aqui por F t,s (g). Além disso, no caso s = 0, métricas de Einstein são sempre críticas para F t (g). Provamos que sob algumas condições, a recíproca destes fatos são verdadeiras. Por exemplo, dentre outros resultados, provamos que se n ≥ 5 e g é uma métrica Bach-flat crìtica para F−n/4(n−1) com segunda função simétrica elementar do tensor de Schouten σ 2 (A) > 0, então g tem que ser métrica de Einstein. Ademais, mostramos que uma métrica crítica localmente conformemente plana, com algumas hipóteses adicionais, tem que ser tipo forma espacial. Na segunda parte, estudamos as métricas críticas do funcional volume sobre variedades Riemannianas compactas com bordo suave conexo. Chamamos tais pontos críticos de métricas críticas de Miao-Tam, devido ao estudo variacional feito por Miao e Tam (2009). Neste trabalho provamos que as bolas geodésicas das formas espaciais Rn , S n e H n possuem o valor máximo para o volume do bordo dentre todas as métricas críticas de Miao-Tam com bordo conexo, desde que o bordo seja uma variedade de Einstein. No mesmo sentido, também estendemos um teorema de rigidez devido à Boucher et al. (1984) e Shen (1997) para métricas estáticas de dimensão n e com curvatura escalar constante positiva, o qual nos fornece outra maneira para obter uma resposta parcial para a Cosmic no-hair conjecture já obtida por Chrusciel (2003).

Page generated in 0.0863 seconds