Spelling suggestions: "subject:"charnock"" "subject:"carnock""
1 |
Knock Model Evaluation – Gas EngineSharma, Nishchay January 2018 (has links)
Knocking is a type of abnormal combustion which depends on several physical factors and results in high frequency pressure oscillations inside the combustion chamber of a spark-ignited internal combustion engine (ICE). These oscillations can damage the engine and hamper its efficiency, which is why it is important for automakers to understand the knocking behavior so that it can be avoided during engine operation. Due to the catastrophic outcomes of knocking a lot of research has been done in the past on prediction of its occurrence. There can be several causes of knocking but when it occurs due to auto-ignition of fuel in the end-gas it’s called spark-knock. There are various mathematical models that predict the phenomenon of spark-knock. In this thesis, several of the previously published knock prediction models for heavy-duty natural-gas engine are studied and analyzed. The main objective of this project is to assess the accuracy of different types of knock prediction models.Amongst all the types of knock prediction models emphasize has been given to empirical correlation models, particularly to the ones which are based on chemical kinetics pertaining to the combustion process of methane. These are the models that claim to predict ignition delay time based on concentration of air and fuel in the unburned zone of the cylinder. The models are assessed based on the knocking behavior they represent across the engine operation range. Results pertaining to the knock prediction models are evaluated in a 1D engine simulation model using AVL BOOST. The BOOST performance prediction model is calibrated against experimentally measured engine test-cell data and the same data is used to assess the knock prediction models.The knock prediction model whose results correlate with experimental observations is analyzed further while other models are discarded. Using the validated model, variation in knock occurrence is evaluated with change in the combustion phasing. Two of the parameter that are used to define the combustion phasing are spark-advance and combustion duration. It was found that when the brake mean effective pressure is kept constant the knock prediction parameter increases linearly with increase in spark advance and decreases linearly with increase in combustion duration. The variation of knock prediction parameter with spark advance showed increasing gradient with increase in engine torque. / Knack i en förbränningsmotor är en typ av onormal förbränning. Det är ett komplicerat fenomen som beror på flera fysiska faktorer och resulterar i högfrekventa tryckoscillationer inuti förbränningskammaren. Dessa oscillationer kan skada motorn och fenomenet hämmar motorns effektivitet. Knack kan uppstå på två sätt i en Otto-motor och detta examensarbete kommer att handla om självantändning. Självantändning, i detta fall, är när ändgasen börjar brinna utan att ha blivit påverkad av flamfronten eller gnistan från tändstiftet. Det finns flera olika matematiska modeller som i olika grader kan prediktera knackfenomenet. I detta examensarbete studeras några av de tidigare publicerade prediktionsmodellerna för knack i Otto-förbränning och modelleras för analys. Huvudsyftet med detta projekt är således att bedöma noggrannheten hos olika typer av knackmodeller. Extra fokus har lagts på empiriska korrelationsmodeller, särskilt till de som är baserade på kemisk kinetik avseende förbränningsprocessen av metan. Dessa modeller förutsäger den tid det tar för ändgasen att självantända, baserat på dess koncentration av luft och bränsle. Knackmodellerna bedöms sedan utifrån det beteende som de förutsäger över motorns driftområde och dess överensstämmelse med kända motorkalibreringsstrategier. Resultatet av knackpredikteringen för de olika knackmodellerna utvärderas och valideras i en motorsimuleringsmodell i mjukvaran AVL BOOST. BOOST-modellen kalibreras mot experimentellt uppmätta motortestdata. Baserat på resultaten från de valda knockmodellerna så blev den modell som bäst korrelerar med kända motorkalibreringsstrategier analyserad djupare. Den utvalda modellen var en ECM modell och den utvärderas ytterligare med avseende på variation i predikterad knack-parameter. Detta görs genom att modifiera två förbränningsparametrar: tändvinkel och förbränningsduration. Det visade sig att modellerna predikterade en linjär ökning då tändningen tidigareläggs och ett linjärt minskande vid längre förbränningsduration, vilket är i enlighet med motortestdata. Vidare visade det sig att variationer i tändvinkel resulterade i en högre gradient i knackpredikteringen vid högre motorbelastningar och korresponderande minskning vid lägre belastning.
|
2 |
Knock model evaluation - Gas engineSharma, Nishchay January 2018 (has links)
Knack i en förbränningsmotor är en typ av onormal förbränning. Det är ett komplicerat fenomen som beror på flera fysiska faktorer och resulterar i högfrekventa tryckoscillationer inuti förbränningskammaren. Dessa oscillationer kan skada motorn och fenomenet hämmar motorns effektivitet. Knack kan uppstå på två sätt i en Otto-motor och detta examensarbete kommer att handla om självantändning. Självantändning, i detta fall, är när ändgasen börjar brinna utan att ha blivit påverkad av flamfronten eller gnistan från tändstiftet. Det finns flera olika matematiska modeller som i olika grader kan prediktera knackfenomenet. I detta examensarbete studeras några av de tidigare publicerade prediktionsmodellerna för knack i Otto-förbränning och modelleras för analys. Huvudsyftet med detta projekt är således att bedöma noggrannheten hos olika typer av knackmodeller. Extra fokus har lagts på empiriska korrelationsmodeller, särskilt till de som är baserade på kemisk kinetik avseende förbränningsprocessen av metan. Dessa modeller förutsäger den tid det tar för ändgasen att självantända, baserat på dess koncentration av luft och bränsle. Knackmodellerna bedöms sedan utifrån det beteende som de förutsäger över motorns driftområde och dess överensstämmelse med kända motorkalibreringsstrategier. Resultatet av knackpredikteringen för de olika knackmodellerna utvärderas och valideras i en motorsimuleringsmodell i mjukvaran AVL BOOST. BOOST-modellen kalibreras mot experimentellt uppmätta motortestdata. Baserat på resultaten från de valda knockmodellerna så blev den modell som bäst korrelerar med kända motorkalibreringsstrategier analyserad djupare. Den utvalda modellen var en ECM modell och den utvärderas ytterligare med avseende på variation i predikterad knack-parameter. Detta görs genom att modifiera två förbränningsparametrar: tändvinkel och förbränningsduration. Det visade sig att modellerna predikterade en linjär ökning då tändningen tidigareläggs och ett linjärt minskande vid längre förbränningsduration, vilket är i enlighet med motortestdata. Vidare visade det sig att variationer i tändvinkel resulterade i en högre gradient i knackpredikteringen vid högre motorbelastningar och korresponderande minskning vid lägre belastning. / Knocking is a type of abnormal combustion which depends on several physical factors and results in high frequency pressure oscillations inside the combustion chamber of a spark-ignited internal combustion engine (ICE). These oscillations can damage the engine and hamper its efficiency, which is why it is important for automakers to understand the knocking behavior so that it can be avoided during engine operation. Due to the catastrophic outcomes of knocking a lot of research has been done in the past on prediction of its occurrence. There can be several causes of knocking but when it occurs due to auto-ignition of fuel in the end-gas it’s called spark-knock. There are various mathematical models that predict the phenomenon of spark-knock. In this thesis, several of the previously published knock prediction models for heavy-duty natural-gas engine are studied and analyzed. The main objective of this project is to assess the accuracy of different types of knock prediction models. Amongst all the types of knock prediction models emphasize has been given to empirical correlation models, particularly to the ones which are based on chemical kinetics pertaining to the combustion process of methane. These are the models that claim to predict ignition delay time based on concentration of air and fuel in the unburned zone of the cylinder. The models are assessed based on the knocking behavior they represent across the engine operation range. Results pertaining to the knock prediction models are evaluated in a 1D engine simulation model using AVL BOOST. The BOOST performance prediction model is calibrated against experimentally measured engine test-cell data and the same data is used to assess the knock prediction models. The knock prediction model whose results correlate with experimental observations is analyzed further while other models are discarded. Using the validated model, variation in knock occurrence is evaluated with change in the combustion phasing. Two of the parameter that are used to define the combustion phasing are spark-advance and combustion duration. It was found that when the brake mean effective pressure is kept constant the knock prediction parameter increases linearly with increase in spark advance and decreases linearly with increase in combustion duration. The variation of knock prediction parameter with spark advance showed increasing gradient with increase in engine torque.
|
Page generated in 0.0212 seconds