Spelling suggestions: "subject:"lparse jogistic degression"" "subject:"lparse jogistic aregression""
1 |
Machine Learning Methods for Biosignature DiscoveryJanuary 2012 (has links)
abstract: Alzheimer's Disease (AD) is the most common form of dementia observed in elderly patients and has significant social-economic impact. There are many initiatives which aim to capture leading causes of AD. Several genetic, imaging, and biochemical markers are being explored to monitor progression of AD and explore treatment and detection options. The primary focus of this thesis is to identify key biomarkers to understand the pathogenesis and prognosis of Alzheimer's Disease. Feature selection is the process of finding a subset of relevant features to develop efficient and robust learning models. It is an active research topic in diverse areas such as computer vision, bioinformatics, information retrieval, chemical informatics, and computational finance. In this work, state of the art feature selection algorithms, such as Student's t-test, Relief-F, Information Gain, Gini Index, Chi-Square, Fisher Kernel Score, Kruskal-Wallis, Minimum Redundancy Maximum Relevance, and Sparse Logistic regression with Stability Selection have been extensively exploited to identify informative features for AD using data from Alzheimer's Disease Neuroimaging Initiative (ADNI). An integrative approach which uses blood plasma protein, Magnetic Resonance Imaging, and psychometric assessment scores biomarkers has been explored. This work also analyzes the techniques to handle unbalanced data and evaluate the efficacy of sampling techniques. Performance of feature selection algorithm is evaluated using the relevance of derived features and the predictive power of the algorithm using Random Forest and Support Vector Machine classifiers. Performance metrics such as Accuracy, Sensitivity and Specificity, and area under the Receiver Operating Characteristic curve (AUC) have been used for evaluation. The feature selection algorithms best suited to analyze AD proteomics data have been proposed. The key biomarkers distinguishing healthy and AD patients, Mild Cognitive Impairment (MCI) converters and non-converters, and healthy and MCI patients have been identified. / Dissertation/Thesis / M.S. Computer Science 2012
|
2 |
Predictive Modeling and Statistical Inference for CTA returns : A Hidden Markov Approach with Sparse Logistic RegressionFransson, Oskar January 2023 (has links)
This thesis focuses on predicting trends in Commodity Trading Advisors (CTAs), also known as trend-following hedge funds. The paper applies a Hidden Markov Model (HMM) for classifying trends. Additionally, by incorporating additional features, a regularized logistic regression model is used to enhance prediction capability. The model demonstrates success in identifying positive trends in CTA funds, with particular emphasis on precision and risk-adjusted return metrics. In the context of regularized regression models, techniques for statistical inference such as bootstrap resampling and Markov Chain Monte Carlo are applied to estimate the distribution of parameters. The findings suggest the model's effectiveness in predicting favorable CTA performance and mitigating equity market drawdowns. For future research, it is recommended to explore alternative classification models and extend the methodology to different markets and datasets.
|
Page generated in 0.0859 seconds