• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 13
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of user and spatial diversity on high data rate wireless systems

Parameswaran, Rajaraman 17 January 2006 (has links)
A novel design paradigm for wireless data delivery involves use of a scheduler at a base station to schedule users awaiting transmission and send downlink data to these users with all available cell power. This is unlike previous systems that share the available downlink power between users and trade off interference with capacity. The concept is used in 3G wireless standards like 1xEVDO and HSDPA. The scheduler is designed to exploit the peaks in channels seen by different users and transmit data to the user that can support the best rate. In contrast, antenna diversity, where multiple antennas are deployed at the receiver or transmitter; has the effect of improving received signal fidelity by averaging the channel variation. In this thesis, we evaluate the joint effect of user diversity and antenna diversity for various scheduling algorithms. The system is first studied with a single user to calculate theoretical throughput values. A loaded system is then simulated and throughput trends are plotted for each user. Total system capacity is evaluated in terms of served bytes for various combinations of scheduling algorithm, diversity type and channel quality. Multi-user scheduling diversity is studied using the same system simulation model via Tomlinson Harashima precoding. Results are generated for various cell powers. Single-user and multi-user scheduling cases are compared to understand the pros and cons of each approach. / Master of Science
12

Channel Equalization and Spatial Diversity for Aeronautical Telemetry Applications

Williams, Ian E. 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / This work explores aeronautical telemetry communication performance with the SOQPSK- TG ARTM waveforms when frequency-selective multipath corrupts received information symbols. A multi-antenna equalization scheme is presented where each antenna's unique multipath channel is equalized using a pilot-aided optimal linear minimum mean-square error filter. Following independent channel equalization, a maximal ratio combining technique is used to generate a single receiver output for detection. This multi-antenna equalization process is shown to improve detection performance over maximal ratio combining alone.
13

A MOBILE RANGE SYSTEM TO TRACK TELEMETRY FROM A HIGH-SPEED INSTRUMENTATION PACKAGE

Leung, Joseph, Aoyagi, Michio, Billings, Donald, Hoy, Herbert, Lin, Mei, Shigemoto, Fred 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / As renewal interest in building vehicles based on hypersonic technologies begin to emerge again, test ranges anticipating in supporting flight research of these vehicles will face a set of engineering problems. Most fundamentals of these will be to track and gather error free telemetry from the vehicles in flight. The first series of vehicles will likely be reduced-scale models that restrict the locations and geometric shapes of the telemetry antennas. High kinetic heating will further limit antenna design and construction. Consequently, antennas radiation patterns will be sub-optimal, showing lower gains and detrimental nulls. A mobile system designed to address the technical issues above will be described. The use of antenna arrays, spatial diversity and a hybrid tracking system using optical and electronic techniques to obtain error free telemetry in the present of multipath will be presented. System tests results will also be presented.
14

Analyzing Spatial Diversity in Distributed Radar Networks

Daher, Rani 24 February 2009 (has links)
We introduce the notion of diversity order as a performance measure for distributed radar systems. We define the diversity order of a radar network as the slope of the probability of detection (PD) versus SNR evaluated at PD =0.5. We prove that the communication bandwidth between the sensors and the fusion center does not affect the growth in diversity order. We also prove that the OR rule leads to the best performance and its diversity order grows as (log K). We then introduce the notion of a random radar network to study the effect of geometry on overall system performance. We approximate the distribution of the SINR at each sensor by an exponential distribution, and we derive the moments for a specific system model. We then analyze multistatic systems and prove that each sensor should be large enough to cancel the interference in order to exploit the available spatial diversity.
15

Low Complexity Space-Time coding for MIMO systems.

Ismail, Amr 24 November 2011 (has links) (PDF)
The last few years witnessed a dramatic increase in the demand on high-rate reliable wireless communications. In order to meet these new requirements, resorting to Multiple-Input Multiple-Output (MIMO) techniques was inevitable as they may offer high-rate reliable wireless communications without any additional bandwidth. In the case where the transmitter does not have any prior knowledge about the channel state information, space-time coding techniques have proved to efficiently exploit the MIMO channel degrees of freedom while taking advantage of the maximum diversity gain. On the other hand, the ML decoding complexity of Space-Time Codes (STCs) generally increases exponentially with the rate which imposes an important challenge to their incorporation in recent communications standards. Recognizing the importance of the low-complexity criterion in the STC design for practical considerations, this thesis focuses on the design of new low-complexity Space-Time Block Codes (STBCs) where the transmitted code matrix can be expressed as a weighted linear combination of information symbols and we propose new codes that are decoded with a lower complexity than that of their rivals in the literature while providing better or slightly lower performance.
16

Analyzing Spatial Diversity in Distributed Radar Networks

Daher, Rani 24 February 2009 (has links)
We introduce the notion of diversity order as a performance measure for distributed radar systems. We define the diversity order of a radar network as the slope of the probability of detection (PD) versus SNR evaluated at PD =0.5. We prove that the communication bandwidth between the sensors and the fusion center does not affect the growth in diversity order. We also prove that the OR rule leads to the best performance and its diversity order grows as (log K). We then introduce the notion of a random radar network to study the effect of geometry on overall system performance. We approximate the distribution of the SINR at each sensor by an exponential distribution, and we derive the moments for a specific system model. We then analyze multistatic systems and prove that each sensor should be large enough to cancel the interference in order to exploit the available spatial diversity.
17

An Initial Code Acquisition Scheme for Indoor Packet DS/SS Systems with Macro/Micro Antenna Diversity

Ikai, Youhei, Katayama, Masaaki, Yamazato, Takaya, Ogawa, Akira 11 1900 (has links)
No description available.
18

On the Impact of MIMO Implementations on Cellular Networks: An Analytical Approach from a Systems Perspective

Kim, Jong Han 25 April 2007 (has links)
Multiple-input/multiple-output (MIMO) systems with the adaptive array processing technique, also referred to as smart antennas, have received extensive attention in wireless communications due to their ability to combat multipath fading and co-channel interference, two major channel impairments that degrade system performance. However, when smart antennas are deployed in wireless networks, careful attention is required since any defective or imperfect operation of smart antennas can severely degrade the performance of the entire network. Therefore, the evaluation of network performance under ideal and imperfect conditions is critical in the process of system design and should precede deploying smart antennas on the wireless network. This work focuses on the development of an analytical framework to evaluate the performance of wireless networks based on popular DS/CDMA cellular systems equipped with antenna arrays. Spatial diversity at both the base station (BS) and the mobile station (MS) is investigated through both analytical analysis and simulation. The main contribution of this research is to provide a comprehensive analytical framework for examining the system level performance with multiple antennas at both the BS and the MS. Using the framework developed in this research, system capacity and coverage of the uplink (or reverse link) are investigated when antenna arrays are implemented at both the BS and the MS. In addition, the system capacity and soft handoff capability of the downlink (or forward link) are examined taking into account MIMO. Furthermore, various physical and upper layer parameters that can affect the system level performance are taken into account in the analytical framework and their combined impact is evaluated. Finally, to validate the analytical analysis results, a system level simulator is developed and selective results are provided. / Ph. D.
19

Low Complexity Space-Time coding for MIMO systems. / Codes Espace-Temps à Faible Complexité pour Systèmes MIMO

Ismail, Amr 24 November 2011 (has links)
Les dernières années ont témoigné une augmentation spectaculaire de la demande des communications sans-fil à taux élevé. Afin de répondre à ces nouvelles exigences, le recours aux techniques Multiple-Input Multiple-Output (MIMO) était inévitable, car ils sont capables d’assurer une transmission fiable des données à haut débit sans l’allocation de bande passante supplémentaire. Dans le cas où l’émetteur ne dispose pas d’information sur l’état du canal, les techniques de codage spatio-temporel se sont avérées d’exploiter efficacement les degrés de liberté du canal MIMO tout en profitant du gain de diversité maximal. D’autre part, généralement la complexité de décodage ML des codes espace-temps augmente de manière exponentielle avec le taux ce qui impose un défi important à leur incorporation dans les normes récentes de communications. Reconnaissant l’importance du critère de faible complexité dans la conception des codes espace-temps, nous nous concentrons dans cette thèse sur les codes espace-temps en bloc où la matrice du code peut être exprimée comme une combinaison linéaire des symboles réels transmis et nous proposons des nouveaux codes qui sont décodables avec une complexité inférieure à celle de leurs rivaux dans la littérature tout en fournissant des meilleurs performances ou des performances légèrement inférieures. / The last few years witnessed a dramatic increase in the demand on high-rate reliable wireless communications. In order to meet these new requirements, resorting to Multiple-Input Multiple-Output (MIMO) techniques was inevitable as they may offer high-rate reliable wireless communications without any additional bandwidth. In the case where the transmitter does not have any prior knowledge about the channel state information, space-time coding techniques have proved to efficiently exploit the MIMO channel degrees of freedom while taking advantage of the maximum diversity gain. On the other hand, the ML decoding complexity of Space-Time Codes (STCs) generally increases exponentially with the rate which imposes an important challenge to their incorporation in recent communications standards. Recognizing the importance of the low-complexity criterion in the STC design for practical considerations, this thesis focuses on the design of new low-complexity Space-Time Block Codes (STBCs) where the transmitted code matrix can be expressed as a weighted linear combination of information symbols and we propose new codes that are decoded with a lower complexity than that of their rivals in the literature while providing better or slightly lower performance.
20

On multipath spatial diversity in wireless multiuser communications

Jones, Haley M., Haley.Jones@anu.edu.au January 2001 (has links)
The study of the spatial aspects of multipath in wireless communications environments is an increasingly important addition to the study of the temporal aspects in the search for ways to increase the utilization of the available wireless channel capacity. Traditionally, multipath has been viewed as an encumbrance in wireless communications, two of the major impairments being signal fading and intersymbol interference. However, recently the potential advantages of the diversity offered by multipath rich environments in multiuser communications have been recognised. Space time coding, for example, is a recent technique which relies on a rich scattering environment to create many practically uncorrelated signal transmission channels. Most often, statistical models have been used to describe the multipath environments in such applications. This approach has met with reasonable success but is limited when the statistical nature of a field is not easily determined or is not readily described by a known distribution.¶ Our primary aim in this thesis is to probe further into the nature of multipath environments in order to gain a greater understanding of their characteristics and diversity potential. We highlight the shortcomings of beamforming in a multipath multiuser access environment. We show that the ability of a beamformer to resolve two or more signals in angle directly limits its achievable capacity.¶ We test the probity of multipath as a source of spatial diversity, the limiting case of which is co-located users. We introduce the concept of separability to define the fundamental limits of a receiver to extract the signal of a desired user from interfering users’ signals and noise. We consider the separability performances of the minimum mean square error (MMSE), decorrelating (DEC) and matched filter (MF) detectors as we bring the positions of a desired and an interfering user closer together. We show that both the MMSE and DEC detectors are able to achieve acceptable levels of separability with the users as close as λ/10.¶ In seeking a better understanding of the nature of multipath fields themselves, we take two approaches. In the first we take a path oriented approach. The effects on the variation of the field power of the relative values of parameters such as amplitude and propagation direction are considered for a two path field. The results are applied to a theoretical analysis of the behaviour of linear detectors in multipath fields. This approach is insightful for fields with small numbers of multipaths, but quickly becomes mathematically complex.¶ In a more general approach, we take a field oriented view, seeking to quantify the complexity of arbitrary fields. We find that a multipath field has an intrinsic dimensionality of (πe)R/λ≈8.54R/λ, for a field in a two dimensional circular region, increasing only linearly with the radius R of the region. This result implies that there is no such thing as an arbitrarily complicated multipath field. That is, a field generated by any number of nearfield and farfield, specular and diffuse multipath reflections is no more complicated than a field generated by a limited number of plane waves. As such, there are limits on how rich multipath can be. This result has significant implications including means: i) to determine a parsimonious parameterization for arbitrary multipath fields and ii) of synthesizing arbitrary multipath fields with arbitrarily located nearfield or farfield, spatially discrete or continuous sources. The theoretical results are corroborated by examples of multipath field analysis and synthesis.

Page generated in 0.0871 seconds