• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 13
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Diversité spatiale et compensation Doppler en communication sous-marine sur signaux large-bandes / Spatial diversity exploitation and Doppler compensation in underwater acoustic environment for wide band signal

Lyonnet, Bastien 19 December 2011 (has links)
Le milieu sous-marin est doublement dispersif, en temps et en fréquence. L'utilisation récente de signaux de communication multi-porteuses offre une solution pour lutter contre la sélectivité fréquentielle. Mais ce type de signaux reste très sensible à la dispersivité fréquentielle. Cette thèse se concentre sur le problème de la dispersivité fréquentielle qu'est l'effet Doppler. Des méthodes d'estimation du paramètre Doppler sont développées pour des signaux multi-porteuses DMT. Est également abordé le problème de la compensation Doppler dans les cas mono et multitrajets. Une méthode générale et une méthode spéci que au signaux multiporteuses sont présentées et testées sur simulation. Cette thèse se distingue par son modèle du canal sous-marin qui considère un paramètre Doppler différent sur chaque trajet. Ceci résulte de la géométrie du problème et des vitesses émetteur/récepteur considérées. Nous présentons nalement des méthodes pour séparer les différents trajets arrivant sur une antenne a n de pouvoir considérer un paramètre Doppler unique sur chacun. / The underwater channel is doubly dispersive, in time and freqeuncy. In the last decade, multicarrier communication signal , like OFDM signal, has offer a solution in order to struggle aginst multipath propagation. Unfortunatly, these kinds of signal is strongly sensitive to Doppler effect. This thesis focus on frequential dispersivity involved by Doppler effect. Several Doppler estimation methods are developped for multicarrier signals. Doppler compensation for one path and multipath channel is also considered. For this problem, we developped general method but also speci c method for DMT signals. Each of them have been tested on simulations. This thesis uses an underwater channel model presenting different Doppler parameter for each path. This approach is a consequence of the problem geometry, considering emitter/receiver velocity. Finaly, using an antenna, we present several methods in order to separate efficiently each arriving path ; allowing us to consider each separated path with a single Doppler parameter to compensate.
22

Investigation, design and implementation of MIMO antennas for mobile phones : simulation and measurement of MIMO antennas for mobile handsets and investigations of channel capacity of the radiating elements using spatial and polarisation diversity strategies

ʿUs̲mān, Muḥammad January 2009 (has links)
The objectives of this work were to investigate, design and implement Multiple-Input Multiple-Output (MIMO) antenna arrays for mobile phones. Several MIMO antennas were developed and tested over various wireless-communication frequency bands. The radiation performance and channel capacity of these antennas were computed and measured: the results are discussed in the context of the frequency bands of interest. A comprehensive study of MIMO antenna configurations such as 2 × 1, 3 × 1, 2 × 2 and 3 × 3, using polarisation diversity as proposed for future mobile handsets, is presented. The channel capacity is investigated and discussed, as applying to Rayleigh fading channels with different power spectrum distributions with respect to azimuth and zenith angles. The channel capacity of 2 × 2 and 3 × 3 MIMO systems using spatial polarisation diversity is presented for different antenna designs. The presented results show that the maximum channel capacity for an antenna contained within a small volume can be reached with careful selection of the orthogonal spatial fields. The results are also compared against planar array MIMO antenna systems, in which the antenna size considered was much larger. A 50% antenna size reduction method is explored by applying magnetic wall concept on the symmetry reference of the antenna structure. Using this method, a triple dual-band inverted-F antenna system is presented and considered for MIMO application. Means of achieving minimum coupling between the three antennas are investigated over the 2.45 GHz and 5.2 GHz bands. A new 2 2 MIMO dual-band balanced antenna handset, intended to minimise the coupling with the handset and human body was proposed, developed and tested. The antenna coupling with the handset and human hand is reported in terms the radiation performance and the available channel capacity. In addition, a dual-polarisation dipole antenna is proposed, intended for use as one of three collocated orthogonal antennas in a polarisation-diversity MIMO communication system. The antenna actually consists of two overlaid electric and magnetic dipoles, such that their radiation patterns are nominally identical but they are cross-polarised and hence only interact minimally.
23

Performance Assessment of Cooperative Relay Networks with Advanced Radio Transmission Techniques

Phan, Hoc January 2013 (has links)
In the past decade, cooperative communications has been emerging as a pertinent technology for the current and upcoming generations of mobile communication infrastructure. The indispensable benefits of this technology have motivated numerous studies from both academia and industry on this area. In particular, cooperative communications has been developed as a means of alleviating the effect of fading and hence improve the reliability of wireless communications. The key idea behind this technique is that communication between the source and destination can be assisted by several intermediate nodes, so-called relay nodes. As a result, cooperative communication networks can enhance the reliability of wireless communications where the transmitted signals are severely impaired because of fading. In addition, through relaying transmission, communication range can be extended and transmit power of each radio terminal can be reduced as well. The objective of this thesis is to analyze the system performance of cooperative relay networks integrating advanced radio transmission techniques and using the two major relaying protocols, i.e., decode-and-forward (DF) and amplify-and-forward (AF). In particular, the radio transmission techniques that are considered in this thesis include multiple-input multiple-output (MIMO) systems and orthogonal space-time block coding (OSTBC) transmission, adaptive transmission, beamforming transmission, coded cooperation, and cognitive radio transmission. The thesis is divided into an introduction section and six parts based on peer-reviewed journal articles and conference papers. The introduction provides the readers with some fundamental background on cooperative communications along with several key concepts of cognitive radio systems. In the first part, performance analysis of cooperative single and multiple relay networks using MIMO and OSTBC transmission is presented wherein the diversity gain, coding gain, outage probability, symbol error rate, and channel capacity are assessed. It is shown that integrating MIMO and OSTBC transmission into cooperative relay networks provides full diversity gain. In the second part, the performance benefits of MIMO relay networks with OSTBC and adaptive transmission strategies are investigated. In the third part, the performance improvement with respect to outage probability of coded cooperation applied to opportunistic DF relay networks over conventional cooperative networks is shown. In the fourth part, the effects of delay of channel state information feedback from the destination to the source and co-channel interference on system performance is analyzed for beamforming AF relay networks. In the fifth part, cooperative diversity is investigated in the context of an underlay cognitive AF relay network with beamforming. In the sixth part, finally, the impact of the interference power constraint on the system performance of multi-hop cognitive AF relay networks is investigated.
24

Target Glint Phenomenon Analysis And Evaluation Of Glint Reduction Techniques

Bahtiyar, Selcuk 01 September 2012 (has links) (PDF)
In this thesis, target induced glint error phenomenon is analyzed and the glint reduction techniques are evaluated. Glint error reduction performance of the methods is given in a comparative manner. First, target glint is illustrated with the dumbbell model which has two point scatterers. This illustration of the glint error builds the basic notion of target scattering centers and effect of scattering characteristics on glint error. This simplest approach is also used to understand the glint reduction methods. In an effort to evaluate the glint reduction techniques, a model based upon the concept of coherent summation of scattering complexes is used . The model is also used for introducing the basic properties of glint phenomenon. Basics of the glint phenomenon and glint reduction techniques are discussed with particular emphasis on diversity methods. Frequency diversity and spatial diversity techniques are described and investigated with generated simulation data. The diversity selection methods which are used to eliminate the erroneous data are introduced and their performances are investigated. Glint error reduction results of various scenarios including both reduction techniques and selection methods are evaluated in comparison with each other. The results indicate that significant reduction of glint error is possible by the appropriate utilization of diversity techniques in radar systems.
25

Structure and diversity of the dry woodland savanna of northern Namibia / Struktur und Diversität der trockenen Savannenwälder im norden Namibias

Graz, Friedrich Patrick 04 February 2005 (has links)
No description available.
26

Game-Theoretic Relay Selection and Power Control in Fading Wireless Body Area Networks

2015 December 1900 (has links)
The trend towards personalized ubiquitous computing has led to the advent of a new generation of wireless technologies, namely wireless body area networks (WBANs), which connect the wearable devices into the Internet-of-Things. This thesis considers the problems of relay selection and power control in fading WBANs with energy-efficiency and security considerations. The main body of the thesis is formed by two papers. Ideas from probability theory are used, in the first paper, to construct a performance measure signifying the energy efficiency of transmission, while in the second paper, information-theoretic principles are leveraged to characterize the transmission secrecy at the wireless physical layer (PHY). The hypothesis is that exploiting spatial diversity through multi-hop relaying is an effective strategy in a WBAN to combat fading and enhance communication throughput. In order to analytically explore the problems of optimal relay selection and power control, proper tools from game theory are employed. In particular, non-cooperative game-theoretic frameworks are developed to model and analyze the strategic interactions among sensor nodes in a WBAN when seeking to optimize their transmissions in the uplink. Quality-of-service requirements are also incorporated into the game frameworks, in terms of upper bounds on the end-to-end delay and jitter incurred by multi-hop transmission, by borrowing relevant tools from queuing theory. The proposed game frameworks are proved to admit Nash equilibria, and distributed algorithms are devised that converge to stable Nash solutions. The frameworks are then evaluated using numerical simulations in conditions approximating actual deployment of WBANs. Performance behavior trade-offs are investigated in an IEEE 802.15.6-based ultra wideband WBAN considering various scenarios. The frameworks show remarkable promise in improving the energy efficiency and PHY secrecy of transmission, at the expense of an admissible increase in the end-to-end latency.
27

Étude d’une antenne vectorielle UHF multibande appliquée à la goniométrie 3D / Study of a multiband UHF vector sensor applied to the 3D direction finding

Lominé, Jimmy 27 November 2014 (has links)
De nos jours, il existe de nombreuses antennes de radiogoniométrie UHF large bande ou multibandes, néanmoins très peu d’entre elles permettent une couverture angulaire 3D. A notre connaissance, la première antenne de radiogoniométrie 3D fût étudiée dans les années 1960, par une équipe de l’université du Michigan. Composée de 17 capteurs positionnés sur une surface hémisphérique, sa taille et son nombre d’éléments en font un dispositif encombrant et complexe à utiliser. De récentes études ont proposé une autre approche basée sur la mesure multicomposante du champ électromagnétique, permettant de réduire la taille des antennes et le nombre d’éléments tout en conservant une couverture angulaire 3D. Cependant, à ce jours, seul des systèmes HF (3MHz-30MHz) ou bande étroite ont été abordés. Cette thèse porte donc sur l’étude et le développement d’une antenne vectorielle UHF multibande appliquée à la radiogoniométrie 3D pour des ondes transverses magnétiques. Tout d’abord, deux techniques de goniométrie adaptées à cette approche sont confrontées : une nouvelle technique basée sur la décomposition en harmonique sphérique du rayonnement de l’antenne qui permet de recomposer le champ électromagnétique reçu à partir d’échantillons mesurés et un algorithme bien connu, MUSIC. Une méthodologie de conception est proposée, en identifiant les critères physiques des antennes vectorielles qui influent sur leurs performances à savoir la précision d’estimation, la sensibilité, le nombre d’éléments et l’encombrement. Cette méthode est utilisée pour développer et réaliser une première antenne vectorielle monobande. La caractérisation de cette antenne réaliste permet d’écarter la première technique de traitement dont les performances sont trop sensibles aux perturbations de rayonnement. Une antenne vectorielle bibande compacte, d’un rayon de λ/4 et d’une hauteur de λ/5.5 à la fréquence la plus basse, composée de seulement six éléments rayonnants couvrant chacun les bandes de fréquences GSM [890MHz-960MHz] et [1710MHZ-1880MHz] est ensuite développée en se basant sur cette méthode de conception. Les capteurs électriques et magnétiques constituant l’antenne sont étudiés séparément puis assemblés selon une répartition spatiale planaire pour restreindre l’encombrement. Les structures rayonnantes sont communes pour les deux bandes de fréquences ce qui permet réduire le nombre d’éléments ainsi que les éventuelles perturbations de rayonnement. Après la caractérisation de l’antenne bibande au travers de simulations numériques, un prototype est réalisé et ses performances d’estimation sont mesurées en chambre anéchoïque afin de valider l’approche par simulation. La sensibilité obtenue est de -110dBW/m² (85μV/m) pour une précision de 5° RMS. Enfin l’étude est élargie au cas général d’antennes multibandes en illustrant le processus d’extension de la couverture fréquentielle par l’ajout d’une troisième bande, [400MHz-430MHz]. Six nouveaux éléments sont donc développés et intégrés aux capteurs GSM existants afin d’obtenir une antenne tribande d’un rayon de λ/3.2 et d’une hauteur de λ/12.5 à 400MHz. Malgré une légère augmentation de l’erreur d’estimation, causée par la présence de ces nouveaux éléments, la caractérisation de cette nouvelle antenne tribande montre de bonnes performances d’estimation avec une sensibilité de -105dBW/m² (155μV/m) pour une précision de 5° RMS. / Nowadays, a lot of wideband or multiband direction finding antennas operating in the UHF band exist. Nevertheless, only few of them allow to estimate the direction of arrival in the full 3D space. At the author’s knowledge, the first 3D direction finding antenna was studied in the 1960s, at the University of Michigan. Composed of 17 sensors, located on a large hemispherical surface, this antenna is bulky and complex to use. Recently, some studies have proposed another approach based on the multicomponent measurement of the electromagnetic field that allows to decrease the antennas size and the number of radiating elements without reducing the 3D angular coverage. However, only HF (3-30MHz) or narrowband systems have been reported. The objective of this PhD is to study and to develop an UHF multiband vector sensor applied to the estimation of the direction of arrival of transverse magnetic waves in the full 3D space. Firstly, two signal processing techniques adapted to this approach are compared : a new technique based on the spherical harmonic decomposition of the antenna radiation which allows to recompose the received electromagnetic field from the measured samples and a well-known high resolution algorithm called MUSIC. A design methodology allowing to identify the physical criteria of vector sensors related to the antenna performances such as the estimation accuracy, the sensitivity, the number of elements and the antenna size is proposed. This method is used for developing and designing a first single-band vector sensor. The results obtained from numerical simulations allow to rule out the first signal processing technique which is too sensitive to the radiation perturbations. Then, a compact dual-band vector sensor operating in the GSM frequency band, [890MHz-960MHz] and [1710MHZ-1880MHz], is developed by using the same design methodology. The antenna size is λ/4 in radius and λ/5.5 in height at the lowest frequency. The electric and magnetic elements which compose the vector sensors are designed separately and then combined according to a planar spatial distribution to retain a compact antenna size. The same radiating structures are used for operating in the two frequency bands in order to reduce the number of elements and the eventual radiation perturbations. After the performances assessment through numerical simulations in each band, a prototype is manufactured and its estimation performances are measured for a validation purpose. The sensitivity is -110dBW.m−2 (85μV.m−1) for a 5◦ RMS angular accuracy. Finally, the study is extended to the general case of multiband antennas by adding a third band, [400MHz-430MHz]. New elements are developed and incorporated into the dual-band GSM sensors to obtain a tri-band vector sensor. The size of this new antenna is λ/3.2 in radius and λ/12.5 in height at 400MHz. Despite a slight increase of the angular errors in the estimation of the direction of arrival caused by the presence of the new antenna elements, the characterization of the tri-band sensor performances by simulation show a good accuracy with a sensitivity valued at -105dBW.m−2 (155μV.m−1) for a 5◦ RMS angular accuracy.
28

ESQUEMA DE COMUNICAÇÃOMIMO PARA QUATRO ANTENAS TRANSMISSORAS E TAXA DE TRANSMISSÃO UNITÁRIA: ANÁLISE DE DESEMPENHO E DE ROBUSTEZ / MIMO COMMUNICATION SCHEME FOR FOUR-TRANSMITING ANTENNA SYSTEM WITH UNITARY TRANSMISSION RATE: PERFORMANCE AND ROBUSTNESS ANALYSIS

Valduga, Samuel Tumelero 31 January 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this master thesis it is proposed a MIMO communication scheme with four transmit antennas and unitary transmission rate. The performance and robustness of the scheme are evaluated and compared with other good proposals recently presented in the literature. The proposed scheme uses a preprocessor based on phase feedback. The preprocessor allows the proposed scheme to obtain full diversity and also coding gain. The pre-processing considers a codebook design, whose size is dependent on the number of feedback bits. Error probability analysis is provided, where the upper and lower bounds for different numbers of feedback bits and antennas are presented, considering two different types of constellations, QAM and PSK. For robustness analysis, channels estimators were used. For the channel estimators model it was added the effects of spatial correlation, enabling the evaluation the losses caused by the spatial correlation among the antennas, and the Doppler effect, for evaluating the loss performance due to the relative mobilitys between trnamitter and receiver. / Nesta dissertação propõe-se um esquema de comunicação MIMO para quatro antenas transmissoras com taxa de transmissão unitária. O desempenho e a robustez do esquema proposto são avaliados e comparados com outras boas propostas recentemente apresentadas na literatura. O esquema proposto utiliza um pré-processador baseado na realimentação de fase provinda do receptor. O pré-processamento permite que o esquema proposto alcance um grau de diversidade completo bem como um ganho de codificação. A pré-codificação considera o uso de um codebook, cujo comprimento depende do número de bits de realimentação disponível. Faz-se uma análise de desempenho da probabilidade de erro, mostrando os limitantes superior e inferior do esquema para diferentes quantidades de bits de realimentação, diferentes números de antenas e para as constelações do tipo PSK e QAM. Para a análise de robustez, considerou-se o emprego de estimadores de canais clássicos. No modelo utilizado para os estimadores de canais foram acrescentados os efeitos da correlação espacial, para se verificar as perdas decorrentes da correlação espacial entre as antenas, e do efeito Doppler, para se avaliar a perda de desempenho decorrente da mobilidade relativa entre transmissor e receptor.
29

Investigation, Design and Implementation of MIMO Antennas for Mobile Phones. Simulation and Measurement of MIMO Antennas for Mobile Handsets and Investigations of Channel Capacity of the Radiating Elements Using Spatial and Polarisation Diversity Strategies.

Usman, Muhammad January 2009 (has links)
The objectives of this work were to investigate, design and implement Multiple-Input Multiple-Output (MIMO) antenna arrays for mobile phones. Several MIMO antennas were developed and tested over various wireless-communication frequency bands. The radiation performance and channel capacity of these antennas were computed and measured: the results are discussed in the context of the frequency bands of interest. A comprehensive study of MIMO antenna configurations such as 2 × 1, 3 × 1, 2 × 2 and 3 × 3, using polarisation diversity as proposed for future mobile handsets, is presented. The channel capacity is investigated and discussed, as applying to Rayleigh fading channels with different power spectrum distributions with respect to azimuth and zenith angles. The channel capacity of 2 × 2 and 3 × 3 MIMO systems using spatial polarisation diversity is presented for different antenna designs. The presented results show that the maximum channel capacity for an antenna contained within a small volume can be reached with careful selection of the orthogonal spatial fields. The results are also compared against planar array MIMO antenna systems, in which the antenna size considered was much larger. A 50% antenna size reduction method is explored by applying magnetic wall concept on the symmetry reference of the antenna structure. Using this method, a triple dual-band inverted-F antenna system is presented and considered for MIMO application. Means of achieving minimum coupling between the three antennas are investigated over the 2.45 GHz and 5.2 GHz bands. A new 2 2 MIMO dual-band balanced antenna handset, intended to minimise the coupling with the handset and human body was proposed, developed and tested. The antenna coupling with the handset and human hand is reported in terms the radiation performance and the available channel capacity. In addition, a dual-polarisation dipole antenna is proposed, intended for use as one of three collocated orthogonal antennas in a polarisation-diversity MIMO communication system. The antenna actually consists of two overlaid electric and magnetic dipoles, such that their radiation patterns are nominally identical but they are cross-polarised and hence only interact minimally.
30

Simulation performance of multiple-input multiple-output systems employing single-carrier modulation and orthogonal frequency division multiplexing

Saglam, Halil Derya 12 1900 (has links)
Approved for public release, distribution is unlimited / This thesis investigates the simulation performance of multiple-input multiple-output (MIMO) systems utilizing Alamoutibased space-time block coding (STBC) technique. The MIMO communication systems using STBC technique employing both single- carrier modulation and orthogonal frequency division multiplexing (OFDM) are simulated in Matlab. The physical layer part of the IEEE 802.16a standard is used in constructing the simulated OFDM schemes. Stanford University Interim (SUI) channel models are selected for the wireless channel in the simulation process. The performance results of the simulated MIMO systems are compared to those of conventional single antenna systems. / Lieutenant Junior Grade, Turkish Navy

Page generated in 0.0783 seconds