• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Traffic Analysis Attacks To Encrypted VoIP Calls

Lu, Yuanchao 10 December 2009 (has links)
No description available.
2

Detecting Speakers in Video Footage

Williams, Michael 01 April 2018 (has links) (PDF)
Facial recognition is a powerful tool for identifying people visually. Yet, when the end goal is more specific than merely identifying the person in a picture problems can arise. Speaker identification is one such task which expects more predictive power out of a facial recognition system than can be provided on its own. Speaker identification is the task of identifying who is speaking in video not simply who is present in the video. This extra requirement introduces numerous false positives into the facial recognition system largely due to one main scenario. The person speaking is not on camera. This paper investigates a solution to this problem by incorporating information from a new system which indicates whether or not the person on camera is speaking. This information can then be combined with an existing facial recognition to boost its predictive capabilities in this instance. We propose a speaker detection system to visually detect when someone in a given video is speaking. The system relies strictly on visual information and is not reliant on audio information. By relying strictly on visual information to detect when someone is speaker the system can be synced with an existing facial recognition system and extend its predictive power. We use a two-stream convolutional neural network to accomplish the speaker detection. The neural network is trained and tested using data extracted from Digital Democracy’s large database of transcribed political hearings [4]. We show that the system is capable of accurately detecting when someone on camera is speaking with an accuracy of 87% on a dataset of legislators. Furthermore we demonstrate how this information can benefit a facial recognition system with the end goal of identifying the speaker. The system increased the precision of a existing facial recognition system by up to 5% at the cost of a large drop in recall.
3

Multichannel audio processing for speaker localization, separation and enhancement

Martí Guerola, Amparo 29 October 2013 (has links)
This thesis is related to the field of acoustic signal processing and its applications to emerging communication environments. Acoustic signal processing is a very wide research area covering the design of signal processing algorithms involving one or several acoustic signals to perform a given task, such as locating the sound source that originated the acquired signals, improving their signal to noise ratio, separating signals of interest from a set of interfering sources or recognizing the type of source and the content of the message. Among the above tasks, Sound Source localization (SSL) and Automatic Speech Recognition (ASR) have been specially addressed in this thesis. In fact, the localization of sound sources in a room has received a lot of attention in the last decades. Most real-word microphone array applications require the localization of one or more active sound sources in adverse environments (low signal-to-noise ratio and high reverberation). Some of these applications are teleconferencing systems, video-gaming, autonomous robots, remote surveillance, hands-free speech acquisition, etc. Indeed, performing robust sound source localization under high noise and reverberation is a very challenging task. One of the most well-known algorithms for source localization in noisy and reverberant environments is the Steered Response Power - Phase Transform (SRP-PHAT) algorithm, which constitutes the baseline framework for the contributions proposed in this thesis. Another challenge in the design of SSL algorithms is to achieve real-time performance and high localization accuracy with a reasonable number of microphones and limited computational resources. Although the SRP-PHAT algorithm has been shown to be an effective localization algorithm for real-world environments, its practical implementation is usually based on a costly fine grid-search procedure, making the computational cost of the method a real issue. In this context, several modifications and optimizations have been proposed to improve its performance and applicability. An effective strategy that extends the conventional SRP-PHAT functional is presented in this thesis. This approach performs a full exploration of the sampled space rather than computing the SRP at discrete spatial positions, increasing its robustness and allowing for a coarser spatial grid that reduces the computational cost required in a practical implementation with a small hardware cost (reduced number of microphones). This strategy allows to implement real-time applications based on location information, such as automatic camera steering or the detection of speech/non-speech fragments in advanced videoconferencing systems. As stated before, besides the contributions related to SSL, this thesis is also related to the field of ASR. This technology allows a computer or electronic device to identify the words spoken by a person so that the message can be stored or processed in a useful way. ASR is used on a day-to-day basis in a number of applications and services such as natural human-machine interfaces, dictation systems, electronic translators and automatic information desks. However, there are still some challenges to be solved. A major problem in ASR is to recognize people speaking in a room by using distant microphones. In distant-speech recognition, the microphone does not only receive the direct path signal, but also delayed replicas as a result of multi-path propagation. Moreover, there are multiple situations in teleconferencing meetings when multiple speakers talk simultaneously. In this context, when multiple speaker signals are present, Sound Source Separation (SSS) methods can be successfully employed to improve ASR performance in multi-source scenarios. This is the motivation behind the training method for multiple talk situations proposed in this thesis. This training, which is based on a robust transformed model constructed from separated speech in diverse acoustic environments, makes use of a SSS method as a speech enhancement stage that suppresses the unwanted interferences. The combination of source separation and this specific training has been explored and evaluated under different acoustical conditions, leading to improvements of up to a 35% in ASR performance. / Martí Guerola, A. (2013). Multichannel audio processing for speaker localization, separation and enhancement [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33101 / TESIS
4

Analysis of speaking time and content of the various debates of the presidential campaign : Automated AI analysis of speech time and content of presidential debates based on the audio using speaker detection and topic detection / Analys av talartid och innehåll i de olika debatterna under presidentvalskampanjen. : Automatiserad AI-analys av taltid och innehåll i presidentdebatter baserat på ljudet med hjälp av talardetektering och ämnesdetektering.

Valentin Maza, Axel January 2023 (has links)
The field of artificial intelligence (AI) has grown rapidly in recent years and its applications are becoming more widespread in various fields, including politics. In particular, presidential debates have become a crucial aspect of election campaigns and it is important to analyze the information exchanged in these debates in an objective way to let voters choose without being influenced by biased data. The objective of this project was to create an automatic analysis tool for presidential debates using AI. The main challenge of the final system was to determine the speaking time of each candidate and to analyze what each candidate said, to detect the topics discussed and to calculate the time spent on each topic. This thesis focus mainly on the speaker detection part of this system. In addition, the high overlap rate in the debates, where candidates cut each other off, posed a significant challenge for speaker diarization, which aims to determine who speaks when. This problem was considered appropriate for a Master’s thesis project, as it involves a combination of advanced techniques in AI and speech processing, making it an important and difficult task. The application to political debates and the accompanying overlapping pathways makes this task both challenging and innovative. There are several ways to solve the problem of speaker detection. We have implemented classical approaches that involve segmentation techniques, speaker representation using embeddings such as i-vectors or x-vectors, and clustering. Yet, due to speech overlaps, the End-to-end solution was implemented using pyannote-audio (an open-source toolkit written in Python for speaker diarization) and the diarization error rate was significantly reduced after refining the model using our own labeled data. The results of this project showed that it was possible to create an automated presidential debate analysis tool using AI. Specifically, this thesis has established a state of the art of speaker detection taking into account the particularities of the politics such as the high speaker overlap rate. / AI-området (artificiell intelligens) har vuxit snabbt de senaste åren och dess tillämpningar blir alltmer utbredda inom olika områden, inklusive politik. Särskilt presidentdebatter har blivit en viktig aspekt av valkampanjerna och det är viktigt att analysera den information som utbyts i dessa debatter på ett objektivt sätt så att väljarna kan välja utan att påverkas av partiska uppgifter. Målet med detta projekt var att skapa ett automatiskt analysverktyg för presidentdebatter med hjälp av AI. Den största utmaningen för det slutliga systemet var att bestämma taltid för varje kandidat och att analysera vad varje kandidat sa, att upptäcka diskuterade ämnen och att beräkna den tid som spenderades på varje ämne. Denna avhandling fokuserar huvudsakligen på detektering av talare i detta system. Dessutom innebar den höga överlappningsgraden i debatterna, där kandidaterna avbröt varandra, en stor utmaning för talardarization, som syftar till att fastställa vem som talar när. Detta problem ansågs lämpligt för ett examensarbete, eftersom det omfattar en kombination av avancerade tekniker inom AI och talbehandling, vilket gör det till en viktig och svår uppgift. Tillämpningen på politiska debatter och den åtföljande överlappande vägar gör denna uppgift både utmanande och innovativ. Det finns flera sätt att lösa problemet med att upptäcka talare. Vi har genomfört klassiska metoder som innefattar segmentering tekniker, representation av talare med hjälp av inbäddningar som i-vektorer eller x-vektorer och klustering. På grund av talöverlappningar implementerades dock Endto-end-lösningen med pyannote-audio (en verktygslåda med öppen källkod skriven i Python för diarisering av talare) och diariseringsfelprocenten reducerades avsevärt efter att modellen förfinats med hjälp av våra egna märkta data. Resultaten av detta projekt visade att det var möjligt att skapa ett automatiserat verktyg för analys av presidentdebatten med hjälp av AI. Specifikt har denna avhandling etablerat en state of the art av talardetektion med hänsyn till politikens särdrag såsom den höga överlappningsfrekvensen av talare.

Page generated in 0.1045 seconds