Spelling suggestions: "subject:"1species"" "subject:"3species""
611 |
Geospatial analysis of invasive plant species and their threats to ecological functionality at the VCU Rice Rivers CenterKellogg, Erik W. 01 January 2019 (has links)
Invasive plants are a significant threat to native ecosystems and to biodiversity. They are often strong competitors and have multiple techniques to outcompete native plants. Thus, controlling or removing invasive plants facilitates the restoration of native ecosystems. We used GPS technology coupled with field surveying techniques adapted from the U.S. Fish and Wildlife Service to locate and identify invasive plants present within VCU’s Rice Rivers Center. We digitally overlaid a 50-meter x 50-meter grid system over the property. In each grid cell we recorded visual estimations of invasive plant coverage sorted into modified Daubenmire cover classes and used ArcGIS for mapping and analysis. Altogether, we found 25 unique invasive plant species. 93% of the grid cells contained at least one invasive species, and one grid cell contained seven unique species. The influence of anthropogenic disturbance on invasive species distribution, analyzed by using a 50-meter wide buffer zone around each disturbance (e.g., roads, buildings, etc.), showed that the presence and coverage of invasive species was greater within disturbed areas compared to intact forest. Microstegium vimineum, Lonicera japonica, and Ligustrum sinense were most common and widely distributed within terrestrial habitats, while Murdannia keisak was most widely distributed in the restored wetland. Our results for M. vimineum were compared to a similar 2004 study: this species has since spread from 40% to 76% of the grid cells. The spatial maps we have created will be a foundation for an integrated invasive species management program at the Rice Rivers Center and will assist with management, control and restoration efforts within terrestrial and aquatic ecosystems.
|
612 |
Use of PCR Cloning Combined with DNA Barcoding to Identify Fish in a Mixed-Species ProductSilva, Anthony 28 May 2019 (has links)
DNA barcoding is a valuable tool for fish species identification by food regulators, however, it does not perform well when multiple species are present within the same food product. PCR cloning has high potential to be used in combination with DNA barcoding to overcome this challenge. The objective of this study was to examine the use of PCR cloning combined with DNA barcoding to identify fish in a mixed-species product that cannot be identified with standard DNA barcoding. A total of 15 fish ball mixtures were prepared with known amounts of Nile tilapia (Oreochromis niloticus), Pacific cod (Gadus macrocephalus), and walleye pollock (Gadus chalcogrammus). The fish balls underwent DNA extraction in triplicate, followed by DNA barcoding across the full barcode (655 bp) and SH-E mini-barcode (226 bp) of the cytochrome c oxidase subunit 1 (CO1) region. Samples that did not pass sequencing according to regulatory standards were further analyzed with PCR cloning. Full barcoding enabled identification of at least one species in 80% of the fish ball mixtures compared to 51% for minibarcoding. The results of PCR cloning with samples that did not pass DNA barcoding showed identification success rates of 61% for clones (54 of 90) that underwent full barcoding and 51% for clones (111 of 220) that underwent mini-barcoding. All fish balls made of just one species tested positive for that species (i.e., tilapia, cod, or pollock).. The combination of standard full barcoding and PCR cloning enabled identification of Nile tilapia in all 12 mixed-species fish balls and Pacific cod in 6 of 12 (50%) of mixed-species fish balls. In comparison, the combination of standard mini-barcoding and PCR cloning enabled identification of Nile tilapia in all 12 mixed-species fish balls and Pacific cod in 9 of 12 (75%) of mixed-species fish balls. Overall, the results of this study show that PCR cloning may be an effective method to identify certain fish in mixed-species products when standard DNA barcoding fails. However, additional research is needed to understand the limitations associated with primer bias.
|
613 |
Biological activity analysis of the crude extract of the Senna species : structure elucidation of a compound with antioxidant activityGololo, Sechene Stanley January 2008 (has links)
Thesis (M.Sc.) --University of Limpopo, 2008 / Senna species, a member of the Fabaceae family (subfamily Caesalpinaceae), is widely used traditionally to treat a number of disease conditions such as sexually transmitted diseases and some forms of intestinal complications. In this study the roots of Senna species, collected from Zebediela region of the Limpopo province (R.S.A), were ground to a fine powder and extracted with acetone by cold/shaking extraction method. The phytochemical composition of the extract was then determined by thin layer chromatography (TLC). The chromatograms were visualised with vanillin-sulphuric acid and p-anisaldehyde reagents. The total phenolic content of the extract was determined by Folin-Ciocalteu method and expressed as TAE/g of dry plant material. The extract was assayed for the in vitro anticancer activity using Jurkat T cells. The antioxidant activity was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay and the antibacterial activity determined by both bioautographic and the microtiter plate methods. The acetone extract of the roots of Senna species inhibited the growth of Jurkat T cells in a dose- and time-dependent manner. The extract was shown to possess free radical scavenging activity and antibacterial activity against Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus with MIC values of 0.16, 0.078, 0.078 and 0.16 mg/ml, respectively. A compound with free radical scavenging activity was isolated from the acetone extract of the roots of Senna species through bioassay-guided fractionation. The isolated compound was identified as 1, 3-diphenol-2-propen-1-one. Thus, the study has systematically shown the biological activity of the roots of Senna species and the isolation and identification of the bioactive compound.
|
614 |
Development of a fungal cellulolytic enzyme combination for use in bioethanol production using hyparrhenia spp as a source of fermentable sugarsNcube, Thembekile January 2013 (has links)
Thesis (PhD. (Microbiology)) --University of Limpopo, 2013 / The current study investigated four fungal species namely Aspergillus niger FGSC A733,
Aspergillus versicolor EF23, Penicillium citrinum AZ01 and Trichoderma harzianum NCGR
0509 for their abilities to produce cellulases and xylanases in submerged and solid state fermentations. Five different substrates (carboxymethyl cellulose, xylan, common thatch grass, wheat bran and Jatropha curcas seed cake) were examined for their potential use as low cost feedstock for fermentation by the fungal species. Aspergillus niger FGSC A733 produced the highest titres of cellulase and xylanase in solid state fermentations using wheat
bran as a substrate. However, because of the need to lower the cost of enzyme production,
Jatropha seed cake a relatively underutilised oilseed cake was used.
Supplementation of the Jatropha seedcake with 10% common thatch grass (Hyperrhenia sp)
resulted in a fivefold increase in the levels of xylanase produced. Cellulase production was not affected by this supplementation. Addition of ammonium chloride increased production
of xylanase while cellulase production was not affected nitrogen supplementation. Maximum xylanase was produced on Jatropha seed cake at 25 °C after 96 hours while cellulase was maximally produced at 40 °C after 96 hours of solid state fermentations. Peak production of xylanase was obtained at an initial pH of 3 whilst cellulase was maximally produced at an
initial pH of 5. The crude xylanase was most active at pH 5 and cellulase at pH 4. The
optimum temperature for cellulase activity was 65 °C and that of xylanase was 50 °C. Under optimized conditions, 6087 U/g and 3974 U/g of xylanase and cellulase per gram of substrate used were obtained respectively.
The diversity of cellulases was investigated so as to determine the most appropriate enzyme mixture for saccharification of the common thatch grass. Proteins from the four species under investigation were partially purified by affinity chromatography on swollen Avicel. The proteins were analysed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis SDS-PAGE and zymography. Potential cellulase bands from SDS-PAGE were sequenced by mass spectrometry. The basic logical alignment tool (BLAST) and Clustal W were used for matching and identifying the sequences with closely related ones in the databases. The identified proteins from Penicillium citrinum AZ01 and Aspergillus versicolor EF23 were found to closely resemble a catalytic domain of cellobiohydrolase from Trichoderma sp. The
three proteins obtained from Aspergillus niger showed resemblance to 1,4-beta glucan
cellobiohydrolase A precursor from Aspergillus niger FGSC A733 was also found to have cellobiase and endoglucanase activity was determined using cellobiase and carboxymethyl cellulose as substrates. Cellulase and xylanase zymograms of proteins from A. niger FGSC A733 demonstrated six active bands ranging from 20 kDa to 43 kDa for cellulase and a 31 kDa active band for xylanase. The cellulase produced by Aspergillus niger FGSC A733 on Jatropha seed cake under
optimised conditions was used for saccharification of 2% (w/v) common thatch grass (CTG) in combination with Celluclast™. Celluclast™ and Aspergillus niger cellulase were mixed at different ratios and the amount of glucose produced over time was monitored using high performance liquid chromatography (HPLC). A ratio of 2 volumes Celluclast™ to one volume Aspergillus niger cellulase was chosen for the saccharification process. The main
enzymes in the mixture were identified using peptide mass fingerprinting as endoglucanases
from the Celluclast™ and cellobiase from the Aspergillus niger cellulase. Concentration of
the Celluclast™ tenfold times (164 FPU) improved the yield of glucose by 42.8 and 37.8% in acid and alkali pre-treated CTG, respectively. Concentrating Aspergillus niger cellulase (13.2 FPU) decreased the production of glucose by 4.8% in acid pre-treated CTG while in alkali pre-treated CTG, a 5% increase in glucose production was observed. Increasing the substrate
loading of acid pre-treated CTG from 2% to 10% (w/v) resulted in a two and a half times
increase in glucose production while an increase of 1.5 g/l glucose was obtained from 7% (w/v) alkali pre-treated CTG. Addition of xylanases from Aspergillus niger to the Celluclast™-Aspergillus niger cellulase mixture decreased glucose production by 16.3% on acid pre-treated CTG while there was an increase of 18.3% glucose in alkali pre-treated CTG. Addition of enzyme preparations from Aspergillus versicolor EF23, Penicillium citrium
AZ01 and Trichoderma harzianum NCGR 0509 to the Celluclast™-Aspergillus niger cellulase mixture resulted in lower glucose production both in acid and alkali pre-treated CTG. Addition of Pentopan™ improved glucose production by 8 and 25% on 10% acid and
7.5% alkali loading of pre-treated CTG respectively. The optimal conditions for the
production of the glucose rich hydrolysate in 10% (w/v) acid and 7% (w/v) alkali pre-treated CTG was found to be the use of Celluclast™-Aspergillus niger cellulase-Pentopan™ mixture (164 FPU Celluclast™ and 13 FPU Aspergillus niger cellulase, 7178 IU) Pentopan™ at 50 °C for 32 hours. The fermentability of the glucose in glucose-rich CTG hydrolysates to ethanol using
Saccharomyces cerevisae WBSA 1386 and Candida shehatae CSIR Y-0492 was investigated. The highest yield of ethanol produced by S. cerevisae WBSA 1386 was 9.8 g/l in the alkali pre-treated CTG hydrolysate and 8.7 g/l in acid pre-treated CTG. C. shehatae CSIR Y-0492 produced 9 g/l of ethanol in alkali pre-treated CTG within 48 hours while acid
pre-treated CTG hydrolysate produced 8.8 g/l of ethanol within 24 hours of the fermentation process. Addition of the nutrient supplement boosted the ethanol yield in the acid pre-treated hydrolysates. The consumption of glucose during fermentation by S. cerevisae WBSA 1386
and C. shehatae CSIR Y-0492 on average was 97%. The C. shehatae CSIR Y-0492 was
expected to produce much higher ethanol yield than the Saccharomyces because of its ability to utilize xylose for ethanol production. This however was not observed in this investigation. The conclusion of this study is that it is possible to produce bioethanol from Hyperrhenia
spp. (CTG) using a combination of fungal enzymes for the production of fermentable sugars.
|
615 |
Evolutionary Consequences of the Introduction of Eleutherodactylus Coqui to HawaiiO'Neill, Eric Michael 01 May 2009 (has links)
The introduction of a species to areas outside its native range can result in ecological and genetic changes of evolutionary significance. The frog Eleutherodactylus coqui was introduced to Hawaii, from Puerto Rico, in the late 1980s and has lost genetic variation in mitochondrial DNA. The extent to which founder effects have influenced phenotypic variation in the introduced range is unknown. In this study I compared phenotypic variation in life-history traits, advertisement calls, and stripe patterns among introduced and native populations of the frog Eleutherodactylus coqui. I also conducted laboratory experiments to determine the influence of genetics and temperature on trait variation. Body size in wild populations was positively correlated with elevation in both ranges, but the slope of elevation on body size was greater in Puerto Rico than in Hawaii. Advertisement call frequencies and rates were negatively correlated with elevation but duration was positively correlated with elevation. Frequencies were correlated with body size, but rate, duration, and intensity were not. Color patterns are more variable in Puerto Rico than Hawaii and appear to be maintained by balancing selection in Puerto Rico. Lab results indicate that body size is negatively correlated with temperature, which may explain Bergmann's rule in the field, but patterns of intrinsic growth rate may explain differences in the effect of elevation between Hawaii and Puerto Rico. Body size appears to explain most of the variation in call frequencies, whereas temperature explained most of the variation in rate and duration. Color patterns appear to be determined by a single locus with five alleles. Founder effects appear to explain the difference between Hawaii and Puerto Rico in color pattern variation and in clinal variation in body size and call frequencies. The loss of genetic variation in these traits is likely to have evolutionary consequences for this species in Hawaii.
|
616 |
Nutrient and Water Interrelationships between Crested Wheatgrass and Two Shrub SpeciesBaker, Paul B. 01 May 1988 (has links)
When crested wheatgrass (Agropyron desertorum) grows in mixture with sagebrush (Artemisia tridentata), its production declines. Its production increases when grown in mixture with fourwing saltbush (Atriplex canescens), according to previous reports. This study investigated soil water extraction and potassium (K) nutrition of the two shrubs to identify possible causes of the differential responses of crested wheatgrass. Crested wheatgrass had reduced, rather than increased, nitrogen (N) and K yield in mixture with fourwing saltbush. No differences in N and phosphorous (P) concentrations were observed between sagebrush and fourwing saltbush, but fourwing saltbush had a much higher K concentration and returned nearly twice as much K to the soil as sagebrush by throughfall and litterfall. Throughfall additions were much greater than those from litterfall. AK-fertilization/water-stress, two-factor greenhouse experiment was conducted with crested wheatgrass. High- and medium-K-fertilization treatments had highest tissue K concentration, but biomass yield was reduced in waterstressed plants with high K-fertilization. A difference of 1.56 MPa in osmotic adjustment was observed between waterstressed plants with high K-fertilization and irrigated, low-K-fertilization plants. These results suggest that K accumulation in fourwing saltbush may be a factor for enhanced crested wheatgrass productivity. Crested wheatgrass grown in mixture with fourwing saltbush had lowered predawn and mid-day xylem water potentials compared with monoculture and sagebrush mixture plots, but no other treatment differences were observed for any species. Fourwing saltbush monoculture plots had the most uniform water extraction rates and may compete less for water than sagebrush when crested wheatgrass extraction rates are highest.
|
617 |
Einfluss des Multidrug Resistance Protein-1 auf die vaskuläre Funktion im Modell des Streptozotocin-induzierten Diabetes der Maus / Role of multidrug resistance protein-1 on endothelial dysfunction in streptozotocin-induced diabetesWick, Matthias Christian January 2013 (has links) (PDF)
Vaskuläre Komplikationen wie Atherosklerose sind bei Diabetikern weit verbreitet. Eine erhöhte Produktion reaktiver Sauerstoffspezies trägt zu einer Dysfunktion des Endothels bei Diabetes und hohen Glukosespiegeln bei. Glutathion (GSH) ist das häufigste zelluläre Thiol und stellt ein bedeutendens Antioxidans des menschlichen Organismus dar. Das Multidrug Resistance Protein 1 (MRP 1) ist im Endothel der Haupttransporter von oxidiertem GSH. Blockiert man MRP 1, so wird unter oxidativem Stress der intrazelluläre GSH-Spiegel erhalten.
In dieser Arbeit wird der Einfluss von MRP 1 auf die endotheliale Funktion und Produktion reaktiver Sauerstoffspezies bei Diabetes und erhöhten Glukosespiegeln anhand von MRP 1-/- -Mäusen und Wildtyp-FVB-Tieren untersucht.
Acht Wochen nach Injektion von STZ wurde die endothelabhängige Vasorelaxation an den isolierten thorakalen Aorten bestimmt. Diabetische Wildtyp-Tiere wiesen eine signifikant verminderte endothelabhängige Vasorelaxation auf. In MRP 1-/- -Tieren hingegen kam es zu keiner Beeinträchtigung der Endothelfunktion. Die endothelunabhängige Vasorelaxation war nicht signifikant unterschiedlich. STZ-induzierter Diabetes führte zu einer signifikant erhöhten Produktion von Superoxidanionen sowie Wasserstoffperoxid in Wildtyp-Tieren. Diabetische MRP 1-/- -Mäuse hingegen zeigten keinen Anstieg der Produktion reaktiver Sauerstoffspezies. Erhöhte Glukosekonzentrationen führten in vitro in humanen aortalen Endothelzellen ebenso zur erhöhten Superoxidanion-Produktion. In Zellen, in denen MRP 1 mittels siRNA herunterreguliert war, zeigte sich keine Erhöhung von Superoxidanionen. In Wildtyp-Mäusen führte Diabetes zu einer Verminderung des vaskulären GSH-Spiegels, wohingegen bei MRP 1-/- -Tieren keine Veränderung auftrat.
Diese Daten weisen auf die wichtige Rolle von MRP 1 bei der unter hohen Glukosekonzentrationen auftretenden endothelialen Dysfunktion hin. MRP 1 stellt somit einen neuen Ansatzpunkt in der Behandlung der durch Diabetes ausgelösten vaskulären Dysfunktion dar. / Vascular complications and atherosclerosis are common in patients with diabetes. An increased production of reactive oxygen species contributes to endothelial dysfunction in diabetes. A major cellular defense against reactive oxygen species is Glutathione. The multidrug resistance associated protein 1 is the main transporter of oxidized glutathione in endothelial cells. Blockade of MRP 1 prevents endothelial cell dysfunction induced by reactive oxygen species.
Diabetes was induced in 12 week old male MRP 1-/- mice or corresponding FVB background wildtype mice by injection of streptozotocin. Eight weeks thereafter endothelium-dependent vasorelaxation was blunted in isolated thoracic aortae. In aortae from diabetic mice lacking MRP 1, endothelium-dependent vasorelaxation was only mildly impaired. STZ induced diabetes increased aortic superoxide and hydrogen peroxide production in wildtype animals, while in aortae from MRP 1-/- mice the reactive oxygen species production was nearly unchanged by diabetic conditions. Aortic levels of reduced glutathione were diminished in diabetic FVB. Glutathione levels did not change in diabetic MRP 1-/- mice.
These data indicate that MRP 1 plays an important role for endothelial dysfunction and reactive oxygen species production in diabetes and under conditions of high glucose. MRP 1 therefore may represent a therapeutic target in treatment of diabetes induced vascular dysfunction.
|
618 |
Systèmes hydrophiles antioxydants pour applications cardiovasculaires : synthèse, caractérisation, études in vitro et in vivo / Hydrophilic Antioxydant Systems for Cardiovascular Applications : Synthesis, Characterization, In Vitro and In Vivo StudiesZuluaga tamayo, Marisol 21 September 2017 (has links)
Une présence en excès d'espèces réactives oxygénées induit un déséquilibre redox cellulaire pouvant conduire à des pathologies liées au stress oxydatif, notamment les pathologies cardiovasculaires. Connue et étudiée pour ses propriétés antioxydantes, l’astaxanthine, molécule de la famille des caroténoïdes, présente un intérêt thérapeutique potentiel. Cependant, sa structure chimique lui confère un caractère hydrophobe ainsi qu’une sensibilité à l’air, à la lumière et à la chaleur. Dans cette thèse, tout d’abord, un système de complexation de l’astaxanthine avec l’hydroxypropyl-b-cyclodextrine a été élaboré (CD-A). Nous démontrons que cette complexation améliore la stabilité de l’astaxanthine en solution aqueuse tout en préservant ses activités antioxydantes, mesurées par des méthodes chimiques et biologiques. L’action du CD-A semble être médiée par les voies de signalisation PTEN/AKT, Nrf2/OH1/NQO1 dans des cellules endothéliales soumises au stress oxydatif. Puis, afin de libérer l’astaxanthine in situ sur le site du stress, nous avons élaboré deux systèmes de type matriciel en PVA/dextrane ou en pullulane/dextrane chargés en CD-A. Nous avons évalué, comme preuve de concept, la faisabilité de ces dispositifs pour le traitement local de la pathologie d’ischémie/reperfusion. Les patchs de PVA/dextrane/CD-A ont montré une bonne compatibilité in vitro, ainsi qu’une grande stabilité et tenue mécanique sans modification des propriétés antioxydantes. Leur biocompatibilité in vivo et suturabilité au muscle cardiaque ont aussi été étudiées. Le deuxième système à base de pullulane/dextrane/CD-A a été évalué in vitro et in vivo dans un modèle d’ischémie/reperfusion du membre inférieur à différentes périodes d'implantation. Les résultats ont montré l’activation d’un mécanisme de défense normal lié à la présence d’un matériel étranger et une diminution de la translocation du Nrf2 pouvant indiquer un effet protecteur dans les tissus traités par le CD-A. Ce manuscrit présente des arguments en faveur du potentiel thérapeutique de systèmes de libération d’astaxanthine agissant au niveau du stress oxydatif lié aux pathologies cardiovasculaires. / An over concentration of reactive oxygen species induces a redox imbalance within the cell inducing oxidative tissue damage and leading to oxidative stress related diseases, particularly cardiovascular pathologies. Astaxanthin, a well-known and studied antioxidant molecule, member of the xanthophyll carotenoid family, presents an important therapeutic potential. However, the chemical structure confers to astaxanthin a hydrophobic character and renders it susceptible to air, light and temperate degradation. During this thesis, a carrier system based on astaxanthin inclusion within hydroxypropyl-β-cyclodextrin(CD-A) was developed. We demonstrate that after astaxanthin inclusion, not only its stability was enhanced by also the antioxidant scavenging capabilities were preserved, confirmed by chemical and biological tests. The action of CD-A seems to be mediated by PTEN/AKT, Nrf2/OH1/NQO1 signaling pathways of endothelial cells submitted to oxidative stress. Then, two systems based on PVA/dextran and Pullulan/Dextran loaded within CD-A were evaluated for astaxanthin in situ delivery in the stressed environment. The feasibility of using these systems in the local treatment of ischemia/reperfusion injury was evaluated as a proof of concept. PVA/Dextran patches showed good in vitro compatibility, high mechanical and stability properties, while preserving CD-A antioxidant capabilities, also the path suturability to the cardiac muscle and the in vivo biocompatibility were studied. The second system based on pullulan/dextran scaffolds were evaluated in vitro and in vivo in an ischemic/reperfusion model at different implantation periods. Results showed an inner body defense mechanism to foreign materials. Additionally, the Nrf2 translocation could indicate a protective effect of CD-A in treated tissues. This manuscript provides a support evidence of the therapeutic potential of CD astaxanthin delivery system, to act against oxidative stress linked to cardiovascular conditions.
|
619 |
Woody and agricultural biomass torrefaction : experimental study and modelling of solid conversion and volatile species release based on biomass extracted macromolecular componentsGonzález Martínez, María 12 October 2018 (has links) (PDF)
Nowadays, there is an increasing awareness on the importance of biomass waste as a renewable source of energy, materials and chemicals. In this context, the European project MOBILE FLIP aims at developing and demonstrating mobile conversion processes suitable with variousunderexploited agro- and forest based biomass resources in order to produce energy carriers, materials and chemicals. One of these processes is torrefaction, which consists in a mild thermal treatment, occurring typically between 200 and 300°C during a few tens of minutes in a defaultoxygen atmosphere. The solid product obtained has thermal and processing properties closer to coal, and thus is suitable as fuel for combustion or gasification. During torrefaction, condensable coproducts are released, that may also be source of “green” chemicals. It is therefore crucial to characterize them to optimize the torrefaction process and design industrial units. Up to now, only few works have been focused on characterizing and modelling both solid and condensable species during torrefaction versus operating conditions and feedstock type. Furthermore, these studies typically include a reduced number of biomasses. Cellulose, hemicellulose and lignin,which constitute biomass macromolecular composition, are determining properties to predict biomass behaviour during torrefaction. However, torrefaction tests on these constituents are rare and always based on commercial compounds, which were proved as little representative of the native biomass. The objective of this study is to analyse the influence of biomass characteristics, mainly represented by the macromolecular composition in cellulose, hemicellulose and lignin, on the global behaviour of biomass in torrefaction, both in terms of solid mass loss and of productionprofiles of the volatile species released, in function of the operating conditions.14 biomasses from the main biomass families (deciduouswood, coniferous wood, agricultural byproductsand herbaceous crops) were selected for this study. An optimized extraction procedure was proposed to recover cellulose, hemicellulose and lignin fractions from 5 reference biomasses. Experiments were performed on a thermogravimetric analyzer coupled to a gas chromatography mass spectrometer device through a heated storage loop system (TGA-GC/MS). Solid degradation kinetics and volatile release profiles were followed during torrefaction experiments combining non-isothermal (200 to 300°C at 3°C/min) and isothermal (300°C, 30 min) conditions, ensuring the chemical regime thanks to the appropriate operating conditions. The results obtained with the raw materials demonstrated that biomass macromolecular composition is a main factor influencing biomass behavior in torrefaction. Consequently, the heterogeneity of the resource results in a diverse behavior in torrefaction, particularly in the case of agricultural biomasses. The results with the extracted components evidenced their very different behavior compared to thecommercial compounds, particularly in the case of cellulose. This suggests that a limitation could be induced by the common use in literature of commercial components for torrefaction modelling. The impact on the characterization of macromolecular components was also shown to be prevailing in their behavior in torrefaction, especially in the case of hemicellulose sugar composition and cellulose crystallinity. Furthermore, differences in release kinetics of volatile species during torrefaction were observed, even for volatiles belonging to the same chemical family (acids, furans, ketones). Derived from these results, a torrefaction model based on the additive contribution of extracted cellulose, hemicelluloses and lignin to the global behavior of biomass in torrefaction was proposed, and this for the 5 representative biomasses.
|
620 |
Ecological study of plant species at Sandford Rocks Nature Reserve (SRNR)Gaol, Mangadas Lumban January 2002 (has links)
The ecology of plant species at Sandford Rocks Nature Reserve (SRNR) was studied. The study site is an important nature reserve that contains relatively undisturbed natural vegetation. It has a mosaic of exposed granite rocks, scrublands and woodlands. The study involved: a description of the structure and composition of the vegetation; the population characteristics of selected Acacia species; aspects of reproduction in Acacia; germination and seedling characteristics of some Acacia and grass species that dominate the reserve; the effect of seed size on germination and seedling characteristics; and, the relationship of seed size to seed coat thickness in selected Acacia species. Five different areas were studied using the point centered quarter method to sample the woody perennial species. Thirteen Acacia species were examined for reproduction characteristics; and in 2 selected Acacia species, the effects of phyllode and/or inflorescence removal on reproduction was investigated. Germination tests were conducted to identify germination characteristics in 8 Acacia and 7 grass species dominant at SRNR. The possible effects of variation in seed size on germination; seedling characteristics; and, seed coat thickness were investigated in Acacia fauntleroyi and Acacia prainii. A total of 85 species from 20 families of woody perennials were collated. All areas were dominated by the Myrtaceae, Mimosaceae and Proteaceae families. There was considerable variability in the structure and composition of vegetation. Most species were present in particular sites and the composition of communities appears to be related to the heterogeneity of the habitat within the reserve. In areas of shallow or rocky soil, vegetation types present include Allocasuarina huegeliana woodland, Grevillea paradoxa low scrubland and Acacia neurophylla medium shrubland. / In a seasonally wet area, vegetation types present include low open grassland; Eucalyptus capillosa (wandoo) woodland; and, Acacia saligna thicket. In deep, dry sandy soil, vegetation types include Phebalium tuberculosum shrubland, Acacia acuminata and Acacia coolgardiensis thickets. On relatively flat areas that gain water from adjacent large granite hills, the vegetation consists mainly of tall, open woodlands of Eucalyptus species. Vegetation types include: medium tall Eucalyptus salmonophloia woodland with Kunzea pulchella shrubland at the periphery of the Eucalyptus woodland. At rock areas, vegetation types present include dense Leptospermum erubescens thicket, low open Acacia prainii and Dodonaea viscosa shrubland. Of the Acacia populations studied, in A. lasiocalyx no recent seedling establishment was observed. It is hypothesised that recruitment occurs in particular periods. As the plants are associated with rock and soils are generally shallow, it appears that recruitment depends on run-off water from the rocks in winter. Continuous recruitment seems to be the pattern in A. prainii with both seedlings and saplings represented. A. fauntleroyi forms relatively small populations; apparently long drought periods (>l00 d) result in mass death and limit its population size. In A. hemiteles, no seedling stage was found, root competition (for water) from associated Eucalyptus species presumably limits its recruitment. Reproductive success of Acacia is affected by rainfall. A wet winter is required to induce flowering and further rain is required after flowering to promote pod development and good seed set. / All Acacia species suffer from drought in the reproduction season, however they differ in their degree of susceptibility. Leaflessness and tree shape also affect Acacia fecundity. Plants bearing more phyllodes produce more flowers and pods, and branches in the upper part of the crown bear heavier inflorescences. In 1998, all Acacia species at SRNR produced mature seed of low weight, with many immature and diseased seed, which gave poor germination. A late spring frost in 1998 is believed to be responsible for limited seed development. In two selected Acacia species, removal of phyllodes reduced the number of pods produced. Presumably, phyllode removal reduces photosynthate produced, therefore the competition among inflorescences (or pods) for resources is more intense and subsequent abortions are likely to occur. All Acacia species studied showed best germination in the cool winter temperature range. Apparently, seeds are adapted to germinate in winter when seasonal moisture is more likely to be available. The best temperature however, varied slightly between species. The grass species dominant in the reserve, except for Aristida contorta, also had more germination in cooler rather than warmer temperatures. The flora of SRNR is similar to typical vegetation of the Southwest. Generally, Acacia species are present only in particular sites, presumably were habitat moisture allows. Seedlings of Acacia species growing in naturally dry areas have greater root: shoot masses than those growing in seasonally wet areas. Biomass partitioning is an apparent strategy to conserve water. Of the 7 grass species, Amphipogon strictus appears to have fastest growth. / Eriachne ovata has greater root than shoot mass, while in all other species, shoot mass is greater than root mass; a characteristic of species that grow well in moist habitats. The longest shoots and roots are in Austrostipa elegantissima, an understorey species of eucalypt woodland. In A. fauntleroyi, the degree of hard-seededness varies between seed sizes. There is a higher proportion of soft seed in smaller seed. Seed of different sizes show some responses to different pre-treatments and incubation temperatures for germination. Larger seeds generally germinate in greater numbers after higher treatment temperatures. The best treatment for small seeds is pre-treatment at 75°C and incubated at 15°C. For medium and large seed, best pre-treatment is at 75°C with incubation at 30°C or soaking in boiling water and incubation at either 15 or 3°C. In A. prainii, seed size; pre-treatment; incubation; and, their interaction all affected germination; larger seeds are more viable. The best treatment to promote germination of A. prainii is soaking in boiling water and incubation at 25°C. In both A. fauntleroyi and A. prainii, larger seeds produce larger seedlings. Seedlings from large seeds have the potential for more rapid pre-photosynthetic growth. Larger, heavier seed has a thicker seed coat. The seed coat of A. prainii is thicker than in A. fauntleroyi; the difference in seed coat thickness is reflected by more soft seed in A. fauntleroyi (35%) than in A. prainii (6%).
|
Page generated in 0.0537 seconds