• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation of Reduced Graphene Oxides as Electrode Materials for Supercapacitors

Bai, Yaocai 06 1900 (has links)
Reduced graphene oxide as outstanding candidate electrode material for supercapacitor has been investigated. This thesis includes two topics. One is that three kinds of reduced graphene oxides were prepared by hydrothermal reduction under different pH conditions. The pH values were found to have great influence on the reduction of graphene oxides. Acidic and neutral media yielded reduced graphene oxides with more oxygen-functional groups, lower specific surface areas but broader pore size distributions than those in basic medium. Variations induced by the pH changes resulted in great differences in the supercapacitor performance. The graphene produced in the basic solution presented mainly electric double layer behavior with specific capacitance of 185 F/g, while the other two showed additional pseudocapacitance behavior with specific capacitance of 225 F/g (acidic) and 230 F/g (neutral), all at a constant current density of 1A/g. The other one is that different reduced graphene oxides were prepared via solution based hydrazine reduction, low temperature thermal reduction, and hydrothermal reduction. The as- prepared samples were then investigated by UV-vis spectroscopy, X-ray diffraction, Raman spectroscopy, and Scanning electron microscope. The supercapacitor performances were also studied and the hydrothermally reduced graphene oxide exhibited the highest specific capacitance.
2

Synthesis and Fabrication of Graphene/Conducting Polymer/Metal Oxide Nanocomposite Materials for Supercapacitor Applications

Khawaja, Mohamad 01 January 2015 (has links)
The rising energy consumption worldwide is leading to significant increases in energy production with fossil fuels being the major energy source. The negative environmental impact of fossil fuel use and its finite nature requires the use of alternative sources of energy. Solar energy is a clean alternative energy source; however, its intermittent nature is a major impediment that needs to be reduced or eliminated by the development of cost effective energy storage. Thermal storage in tanks filled typically with molten salt at elevated temperatures is widely used in concentrating solar power plants to generate electricity during periods of low daytime solar radiation or night time. Similarly, electrical storage in batteries, etc. is used in conjunction with photovoltaic solar power plants. Electrochemical supercapacitors can be effectively used for electrical storage, either alone or in a hybrid configuration with batteries, for large scale energy storage as well as in electric vehicles and portable electronics. Unlike batteries’, supercapacitor electrodes can be made of materials that are either less toxic or biodegradable and can provide almost instantaneous power due to their unique charge storage mechanism similar to conventional capacitors found in most electronics. Unfortunately, the same storage mechanism prevents supercapacitors from having high energy density. The purpose of this dissertation is to investigate organic and inorganic electrode materials that can increase the specific capacitance and energy density of supercapacitors. Additionally, certain types of supercapacitor electrode materials store the charges at the electrode/electrolyte interface preventing any deformation of the material and thus increasing its cycle life by two to three orders of magnitude. Transition metal oxides, layered transition metal chalcogenides, and their composites with graphene and conducting polymers have been synthesized, characterized, and their electrochemical performances evaluated for suitability as electrode materials for supercapacitor applications. Morphology and crystalline structure characterization methods used, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), were used throughout this work. Electrochemical characterization involved cyclic voltammetry (CV), constant current charge and discharge (CCCD), and electrochemical impedance spectroscopy (EIS) in two and three electrode configuration using aqueous and organic electrolytes. Ruthenium oxide-graphene (RuO2-G) electrodes were tested in the two-electrode cell configuration and exhibit an areal capacitance of 187.5 mF cm-2 in 2M H2SO4 at a RuO2:G ratio of 10:1. Due to RuO2 high toxicity, scarcity, and high cost, manganese oxide-graphene (MnO-G) was used as an alternative but its low specific capacitance remains a major stumbling block. The electrodes’ mass loading was studied in detail to understand the effects of thickness on the measured specific capacitance. Layered transition metal chalcogenides are structurally similar to graphene but possess different characteristics. Molybdenum sulfide (MoS2) is a two-dimensional material that has lower conductivity than graphene but larger sheet spacing making it easy for other materials to intercalate and form composites such as molybdenum sulfide-polyaniline (MoS2-PANI). MoS2-PANI electrodes, with different thicknesses, were measure in a three-electrode cell configuration resulting in gravimetric capacitance of 203 F g-1 for the thinnest electrode and areal capacitance of 358 mF cm-2 for the thickest electrode; all measurements performed using 1M H2SO4 aqueous electrolyte. Attempts were also made to reduce the supercapacitor self-discharge by depositing on the electrode a blocking thin layer of barium strontium titanate (BST). The results were rather inconclusive because of the large thickness of the deposited BST layer. However, they strongly suggest that a very thin BST layer could improve the overall capacitance because of the very large dielectric constant of the BST material. Additional work is required to determine its effects on self-discharge.
3

Graphene-based Supercapacitors for Energy Storage Applications

Yang, Hao January 2013 (has links)
No description available.
4

Development of Nanostructured Graphene/Conducting Polymer Composite Materials for Supercapacitor Applications

Basnayaka, Punya A. 01 January 2013 (has links)
The developments in mobile/portable electronics and alternative energy vehicles prompted engineers and researchers to develop electrochemical energy storage devices called supercapacitors, as the third generation type capacitors. Most of the research and development on supercapacitors focus on electrode materials, electrolytes and hybridization. Some attempts have been directed towards increasing the energy density by employing electroactive materials, such as metal oxides and conducting polymers (CPs). However, the high cost and toxicity of applicable metal oxides and poor long term stability of CPs paved the way to alternative electrode materials. The electroactive materials with carbon particles in composites have been used substantially to improve the stability of supercapacitors. Furthermore, the use of carbon particles and CPs could significantly reduce the cost of supercapacitor electrodes compared to metal oxides. Recent developments in carbon allotropes, such as carbon nanotubes (CNTs) and especially graphene (G), have found applications in supercapacitors because of their enhanced double layer capacitance due to the large surface area, electrochemical stability, and excellent mechanical and thermal properties. The main objective of the research presented in this dissertation is to increase the energy density of supercapacitors by the development of nanocomposite materials composed of graphene and different CPs, such as: (a) polyaniline derivatives (polyaniline (PANI), methoxy (-OCH3) aniline (POA) and methyl (-CH3) aniline (POT), (b) poly(3-4 ethylenedioxythiophene) (PEDOT) and (c) polypyrrole (PPy). The research was carried out in two phases, namely, (i) the development and performance evaluation of G-CP (graphene in conducting polymers) electrodes for supercapacitors, and (ii) the fabrication and testing of the coin cell supercapacitors with G-CP electrodes. In the first phase, the synthesis of different morphological structures of CPs as well as their composites with graphene was carried out, and the synthesized nanostructures were characterized by different physical, chemical and thermal characterization techniques, such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), UV-visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, BET surface area pore size distribution analysis and Thermogravimetric Analysis (TGA). The electrochemical properties of G-CP nanocomposite-based supercapacitors were investigated using Cyclic Voltammetry (CV), galvanostatic charge-discharge and Electrochemical Impedance Spectroscopy (EIS) techniques in different electrolytes, such as acidic (2M H2SO4 and HCl), organic ( 0.2 M LiClO4) and ionic liquid (1M BMIM-PF6) electrolytes. A comparative study was carried out to investigate the capacitive properties of G-PANI derivatives for supercapacitor applications. The methyl substituted polyaniline with graphene as a nanocomposite (G-POT) exhibited a better capacitance (425 F/g) than the G-PANI or the G-POA nanocomposite due to the electron donating group of G-POT. The relaxation time constants of 0.6, 2.5, and 5s for the G-POT, G-PANI and G-POA nanocomposite-based supercapacitors were calculated from the complex model by using the experimental EIS data. The specific capacitances of two-electrode system supercapacitor cells were estimated as 425, 400, 380, 305 and 267 F/g for G-POT, G-PANI, G-POA, G-PEDOT and G-PPy, respectively. The improvements in specific capacitance were observed due to the increased surface area with mesoporous nanocomposite structures (5~10 nm pore size distribution) and the pseudocapacitance effect due to the redox properties of the CPs. Further, the operating voltage of G-CP supercapacitors was increased to 3.5 V by employing an ionic liquid electrolyte, compared to 1.5 V operating voltage when aqueous electrolytes were used. On top of the gain in the operating voltage, the graphene nano-filler of the nanocomposite prevented the degradation of the CPs in the long term charging and discharging processes. In the second phase, after studying the material's chemistry and capacitive properties in three-electrode and two-electrode configuration-based basic electrochemical test cells, coin cell type supercapacitors were fabricated using G-CP nanocomposite electrodes to validate the tested G-CPs as devices. The fabrication process was optimized for the applied force and the number of spacers in crimping the two electrodes together. The pseudocapacitance and double layer capacitance values were extracted by fitting experimental EIS data to a proposed equivalent circuit, and the pseudocapacitive effect was found to be higher with G-PANI derivative nanocomposites than with the other studied G-CP nanocomposites due to the multiple redox states of G-PANI derivatives. The increased specific capacitance, voltage and small relaxation time constants of the G-CPs paved the way for the fabrication of safe, stable and high energy density supercapacitors.
5

Graphol and vanadia-linkedzink-doped lithium manganese silicate nanoarchitectonic platforms for supercapatteries

Ndipingwi, Miranda Mengwi January 2020 (has links)
Philosophiae Doctor - PhD / Energy storage technologies are rapidly being developed due to the increased awareness of global warming and growing reliance of society on renewable energy sources. Among various electrochemical energy storage technologies, high power supercapacitors and lithium ion batteries with excellent energy density stand out in terms of their flexibility and scalability. However, supercapacitors are handicapped by low energy density and batteries lag behind in power. Supercapatteries have emerged as hybrid devices which synergize the merits of supercapacitors and batteries with the likelihood of becoming the ultimate power sources for multi-function electronic equipment and electric/hybrid vehicles in the future. But the need for new and advanced electrodes is key to enhancing the performance of supercapatteries. Leading-edge technologies in material design such as nanoarchitectonics become very relevant in this regard. This work involves the preparation of vanadium pentoxide (V2O5), pristine and zinc doped lithium manganese silicate (Li2MnSiO4) nanoarchitectures as well as their composites with hydroxylated graphene (G-ol) and carbon nanotubes (CNT). / 2023-12-01

Page generated in 0.0409 seconds