• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 19
  • 4
  • 4
  • 1
  • Tagged with
  • 73
  • 73
  • 22
  • 17
  • 14
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Spectral Efficiency and Adjacent Channel Interference Performance Definitions and Requirements for Telemetry Applications

Feher, Kamilo, Jefferis, Robert, Law, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Organizations such as the National Telecommunications and Information Administration (NTIA), Federal Communications Commission (FCC), International Telecommunications Union (ITU) and various commercial entities use a wide range of spectral efficiency criteria in different broadcast and wireless system applications. These criteria and related specifications have significant differences. This paper briefly reviews some common adjacent channel interference (ACI) definitions as well as issues surrounding the definition of spectral efficiency. The impact of these parameters on system bit error rate (BER) performance and closely "packed" adjacent signals is described. ACI criteria and spectral efficiency definitions considered appropriate for existing telemetry applications and deployment of new generations of spectrally efficient systems are illustrated. Specific ACI and spectral efficiency performance requirements adopted by the Department of Defense (DoD) and Advanced Range Telemetry (ARTM) project are highlighted.
22

SPECTRAL EFFICIENCY/BIT ERROR RATE OF FQPSK AND OTHER NON-COHERENT SYSTEMS SUPERIOR TO COHERENT SYSTEMS FOR SMS AND BURSTED TDMA AND CDMA SYSTEMS

McCorduck, James A., Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / For faster acquisition in bursted environments for SMS (Short Messaging Service) and other lower-bit rate applications, non-coherent detection techniques are proposed. Non-Coherent detection demodulators are proposed because faster acquisition capability in bursted environments can result in a reduced amount of preamble bits in the messaging frame, i.e. less overhead, resulting in an effective increase in spectral efficiency. Reducing the preamble can also provide performance enhancement opportunities for Feher Quadrature Phase Shift Keying (FQPSK) [1] and for other systems. The preamble can also be varied to provide for better Bit Error Rate (BER) performance. The lower bit rate environment also gives the opportunity to employ simpler architectures in lieu of preamble modification. Several non-coherent detection alternatives are described.
23

Test and Evaluation of Ultra High Spectral Efficient Feher Keying (FK)

Lin, Jin-Song, Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Performances of a subclass of a new spectral efficient modulation scheme, designated as Feher Keying [1], or FK, is evaluated. The Power Spectral Density (PSD) and Bit Error Rate (BER) characteristics of FK are presented. FK has ultra high spectral efficiency and satisfies the frequency mask for WLAN defined in FCC part 15, and it has a simple structure for high bit rate implementation.
24

Resource allocation for downlink non-orthogonal multiple access (NOMA) system

Al-Abbasi, Ziad January 2017 (has links)
In wireless networks, the exponentially increasing demands for wireless services are encountered by the scarcity of the available radio resources. More bandwidth is required for not only accommodating the increasing number of users, but also to meet the requirements of the new services such as TV on demand, wireless gaming, and mobile Internet. Non-orthogonal multiple access (NOMA) has attracted a great attention recently due to its superior spectral efficiency (SE) over orthogonal multiple access and could play a vital role in improving the capacity of future networks. In particular, power based NOMA multiplexes the users in power domain via superposition coding (SC) and allows them to access the whole spectrum simultaneously while using successive interference cancellation (SIC) at the receiver side for signal detection. Since NOMA exploits the power domain for multiple access, power allocation is vital to achieve superior SE with NOMA. Resource allocation and its optimization are general methods used to further improve the NOMA based networks performance. In this thesis, the resource allocation in the downlink NOMA system is considered and optimized for different objective functions such as the sum rate and the energy efficiency (EE). In addition, the combination of NOMA and multiple antenna is considered using linear and non-linear precoders. In all the considered cases, suboptimal power allocation schemes are proposed and compared to the numerically obtained optimal one. Results confirm that NOMA outperforms OFDMA. It also support the effectiveness of the proposed schemes as compared to the existing ones and to the optimal one. The results also reveal that using multiple antennas with NOMA can significantly enhance the overall performance. Furthermore, a NOMA-multicell scenario is considered to test the proposed schemes under the effect of intercell interference (ICI). The results prove that the proposed methods effective as compared to the optimal one at a much lower complexity.
25

Adaptive MIMO Systems with Channel State Information at Transmitter

Huang, Jinliang January 2009 (has links)
This dissertation presents adaptation techniques that can achieve high spectral efficiency for single user multiple-input multiple-output (MIMO) systems. Two types of adaptation techniques, adaptive modulation and adaptive powe allocation, are employed to adapt the rate and the transmit power to fading channels. We start by investigating the adaptive modulation subject to a certain bit-error-ratio (BER) constraint, either instantaneous BER constraint or average BER constraint. The resulting average spectral efficiencies are obtained in closed-form expressions. It turns out that, by employing the average BER constraint, we can achieve the optimal average spectra efficiency at the cost of prohibitive computational complexity. On the other hand, instantaneous BER constraint leads to inferior performance with little computational complexity. In order to achieve comparable performance to the average BER constraint with limited complexity, a non-linear optimization method is proposed. To further enhance the average spectra efficiency, adaptive power allocation schemes are considered to adjust the transmit power across the temporal domain or the spatial domain, depending on the specific situation. Provided the closed-form expressions of the average spectral efficiency, the optimal MIMO coding scheme that offers the highest average spectral efficiency under the same circumstances can be identified. As we take into account the effect of imperfect channel estimation, the adaptation techniques are revised to tolerate interference introduced by the channel estimation errors. As a result, the degradation with respect to the average spectral efficiency is in proportion to signal-to-noise ratio (SNR). In order to facilitate fast development and verification of the adaptation schemes proposed for various MIMO systems, a reconfigurable Link Layer Simulator (LiLaS) which accommodates a variety of wireless/wireline applications is designed in the environment of MATLAB/OCTAVE. The idea of the simulator is originated from Software Defined Radio (SDR) and evolved to suit Cognitive Radio (CR) applications. For the convenience of modification and reconfiguration, LiLaS is functionally divided into generic blocks and all blocks are parameterized. / QC 20100812
26

Linear Precoding Performance of Massive MU-MIMO downlink System

Pakdeejit, Eakkamol January 2013 (has links)
Nowadays, multiuser Multiple-In Multiple-Out systems (MU-MIMO) are used in a new generation wireless technologies. Due to that wireless technology improvement is ongoing, the numbers of users and applications increase rapidly. Then, wireless communications need the high data rate and link reliability at the same time. Therefore, MU-MIMO improvements have to consider 1) providing the high data rate and link reliability, 2) support all users in the same time and frequency resource, and 3) using low power consumption. In practice, the interuser interference has a strong impact when more users access to the wireless link. Complicated transmission techniques such as interference cancellation should be used to maintain a given desired quality of service. Due to these problems, MU-MIMO with very large antenna arrays (known as massive MIMO) are proposed. With a massive MU-MIMO system, we mean a hundred of antennas or more serving tens of users. The channel vectors are nearly orthogonal, and then the interuser interference is reduced significantly. Therefore, the users can be served with high data rate simultaneously. In this thesis, we focus on the performance of the massive MU-MIMO downlink where the base station uses linear precoding techniques to serve many users over Rayleigh and Nakagami-m fading channels.
27

Adaptation in multiple input multiple output systems with channel state information at transmitter

Huang, Jinliang January 2007 (has links)
<p>This thesis comprises two parts: the first part presents channel-adaptive techniques to achieve high spectral efficiency in a single user multiple-input multiple-output (MIMO) system; the second part exhibits a programmable and reconfigurable software-defined-radio orkbench(SDR-WB) in the Matlab/Octave environment that accommodates a variety of wireless applications.</p><p>In an attempt to achieve high spectral efficiency, an adaptive modulation technique is applied at the transmitter to vary the data rate depending on the channel state information (CSI). To further enhance the spectral efficiency, adaptive power allocation schemes are applied in the spatial domain to adjust the power on every transmit antenna. We analyze several power control schemes subject to a peak power constraint to maximize the spectral efficiency given an instantaneous target bit-error-rate (BER). A novel power allocation trategy is proposed to achieve high spectral efficiency with relatively low complexity. In addition, adaptive techniques that switch across different MIMO schemes enables even higher spectral efficiency by choosing the scheme with the highest spectral efficiency. We propose a new method to switch between spatial multiplexing with zero-forcing (ZF) detection and orthogonal space-time block coding (OSTBC). This is done by exploiting closed form expressions of the spectral efficiencies--discrete rate spectral efficiency--and finding the crossing points of the two curves. The proposed adaptation scheme adds limited complexity to the transmitter since it requires only statistical information of the channel, which does not change as time evolves.</p><p>Software Defined Radio (SDR) has received more and more interest recently as a promising multi-band multi-standard solution for transceiver design. In order to support as many wireless applications as possible, we build up a programmable and reconfigurable workbench, namely SDR-WB, in Matlab/Octave environment. The workbench is functionally modularized into generic blocks to facilitate fast development and verification of new algorithms and architectures. The modulation formats that are currently supported by the SDR-WB are MIMO, Orthogonal frequency-division multiplexing (OFDM), MIMO-OFDM, DS-CDMA and Filtered Multitone (FMT).</p>
28

Green heterogeneous cellular networks

Mugume, Edwin January 2016 (has links)
Data traffic demand has been increasing exponentially and this trend will continue over theforeseeable future. This has forced operators to upgrade and densify their mobile networks toenhance their capacity. Future networks will be characterized by a dense deployment of different kinds of base stations (BSs) in a hierarchical cellular structure. However network densification requires extensive capital and operational investment which limits operator revenues and raises ecological concerns over greenhouse gas emissions. Although networks are planned to support peak traffic, traffic demand is actually highly variable in both space and time which makes it necessary to adapt network energy consumption to inevitable variations in traffic demand. In this thesis, stochastic geometry tools are used to perform simple and tractable analysis of thecoverage, rate and energy performance of homogeneous networks and heterogeneous networks(HetNets). BSs in each tier are located according to independent Poisson Point Processes(PPPs) to generate irregular topologies that fairly resemble practical deployment topologies. The homogeneous network is optimized to determine the optimal BS density and transmit power configuration that minimizes its area power consumption (APC) subject to both coverage and average rate constraints. Results show that optimal transmit power only depends on the BSpower consumption parameters and can be predetermined. Furthermore, various sleep modemechanisms are applied to the homogeneous network to adapt its APC to changes in userdensity. A centralized strategic scheme which prioritize BSs with the least number of usersenhances energy efficiency (EE) of the network. Due to the complexity of such a centralizedscheme, a distributed scheme which implements the strategic algorithm within clusters of BSsis proposed and its performance closely matches that of its centralized counterpart. It is more challenging to model the optimal deployment configuration per tier in a multi-tier HetNet. Appropriate assumptions are used to determine tight approximations of these deployment configurations that minimize the APC of biased and unbiased HetNets subject tocoverage and rate constraints. The optimization is performed for three different user associationschemes. Similar to the homogeneous network, optimal transmit power per tier also depends onBS power consumption parameters only and can also be predetermined. Analysis of the effect of biasing on HetNet performance shows appropriate biasing can further reduce the deploymentconfiguration (and consequently the APC) compared to an unbiased HetNet. In addition, biasing can be used to offload traffic from congesting and high-power macro BSs to low-power small BSs. If idle BSs are put into sleep mode, more energy is saved and HetNet EE improves. Moreover, appropriate biasing also enhances the EE of the HetNet.
29

Improving secrecy and spectral efficiency of wireless communications

Alotaibi, Nafel Nahes A. January 2016 (has links)
The current and future demand for wireless technology is increasing rapidlyin the era of Internet-of-things, information-shower, auto-drive vehicles andthe fifth generation of mobile communications. The flourishing in wirelesstechnologies comes from their advantages such as mobility, flexibility, easy toextend, easy to install and easy to do the maintenance. However, the wirelesstechnology is suffering from many problems such as; lack of security andthe shortage of spectrum bands. The security remains a major challenge forthe wireless communications because of the broadcasting nature of wirelesssignals and massive researches have been conducted to deal with it. Beamformingis one of the physical layer security solutions that is proposed toimprove the security by focusing the majority of the transmitted power towardthe legitimate destination. The main concern about the beamformingtechnique is the relatively small amount of power that escapes from the sidelobes where any illegal user equipped with a sufficiently sensitive receivercan detect its information. The literature has been received many differentsolutions to secure the side lobes emissions. These solutions suffer from fourcommon limitations; 1) the need to modulate the signal at the antenna level,2) the data rates are restricted by the switching speed, 3) they can not easily beintegrated with the current infrastructure, and 4) they work only with phasemodulation. In this thesis, a new, simple, economic, easy to get integratedwith current phased array systems and effective solution has been proposedand analytically analysed under different circumstances, including noiseless,noisy and Rician fading channels and the effect of phase shift errors. The secondproblem addressed in this thesis is the poor spectral efficiency of spaceshift keying modulation. This thesis proposes a new physical layer directcode to improve the spectral efficiency of space shift keying modulation byexploiting the indices of both active and inactive transmitting antennas.
30

Smart packet access and call admission control for efficient resource management in advanced wireless networks

Phan, V. V. (Vinh V.) 12 April 2005 (has links)
Abstract Efficient management of rather limited resources, including radio spectrum and mobile-terminal battery power, has been the fundamental design challenge of wireless networks and one of the most widespread research problems over the years. MAC (Medium Access Control) for packet access and CAC (Call Admission Control) for connection-oriented service domains are commonly used as effective tools to manage radio resources, capacity and performance of wireless networks while providing adequate QoS (Quality of Service) to mobile users. Hence, analysis and synthesis of efficient MAC and CAC schemes for advanced wireless networks have significant academic and practical values. This dissertation addresses that topic and presents seven separate contributions of the author: four on adaptive MAC schemes for centralized PRN (Packet Radio Networks), referred to as SPA (Smart Packet Access) and three on CAC schemes for cellular networks, referred to as SCA (Smart Call Admission). These contributions are published in eighteen original papers by the author, which are listed and referred to as Papers I–XVIII in this thesis. In SPA, the first contribution, reported in Papers II and IV, studies implementation losses of adaptive feedback-control MAC schemes for the uplink of DS-CDMA (Direct-Sequence Code Division Multiple Access) PRN in the presence of various system imperfections. The second contribution, reported in Papers XI, XII, XV and XVI, proposes a bit-rate adaptive MAC scheme for DS-CDMA PRN, referred to as SPR (Smart Packet Rate). The third contribution, reported in Papers III, XIII and XIV, develops two alternative MAC schemes with adaptive packet-length over correlated fading channels in DS-CDMA PRN, referred to as SPL (Smart Packet Length). The fourth contribution, reported in Papers XVII and XVIII, develops alternative adaptive MAC schemes for optimal trade-offs between throughput and energy consumption of TCP (Transmission Control Protocol) applications in advanced cellular networks. These include a so-called SPD (Smart Packet Dispatching) for HSPA (High Speed Packet Access) and, again, SPL for LSPA (Low Speed Packet Access). Moving on to SCA, the first contribution, reported in Papers V and VII, provides a simple and accurate analytical method for performance evaluation of a class of fixed-assignment CAC schemes with generic guard-channel policy and queuing priority handoffs in cellular networks. The second contribution, reported in Papers VI, IX and X, proposes a simple and effective SCAC (Soft-decision CAC) scheme for CDMA cellular networks. This is evaluated against fixed-assignment and measurement-based CAC schemes with a simple and reliable method provided as a part of the contribution. The third contribution, reported in Papers I and VIII, incorporates alternative QoS differentiation paradigms and resource partitioning into CAC, defines GoS (Grade of Service) for multimedia cellular networks, and provides an in-hand tool for efficient capacity and GoS management.

Page generated in 0.1128 seconds