Spelling suggestions: "subject:"epectral band"" "subject:"8pectral band""
1 |
Exploiting Remotely Sensed Hyperspectral Data Via Spectral Band Grouping for Dimensionality Reduction and MulticlassifiersVenkataraman, Shilpa 06 August 2005 (has links)
To overcome the dimensionality curse of hyperspectral data, an investigation has been done on the use of grouping spectral bands, followed by feature level fusion and classifier decision fusion, to develop an automated target recognition (ATR) system for data reduction and enhanced classification. The entire span of spectral bands in the hyperspectral data is subdivided into groups based on performance metrics. Feature extraction is done using supervised methods as well as unsupervised methods. The effects of classification of the lower dimension data by parametric, as well as non-parametric, classifiers are studied. Further, multiclassifiers and decision level fusion using Qualified Majority Voting is applied to the features extracted from each group. The effectiveness of the ATR system is tested using the hyperspectral signatures of a target class, Cogongrass (Imperata Cylindrica), and a non-target class, Johnsongrass (Sorghum halepense). A comparison of target detection accuracies by before and after decision fusion illustrates the effect of the influence of each group on the final decision and the benefits of using decision fusion with multiclassifiers. Hence, the ATR system designed can be used to detect a target class while significantly reducing the dimensionality of the data.
|
2 |
Skattning av skogliga variabler genom satellitbilder från Sentinel 2 : Estimation of forest variables using satellite images from Sentinel 2Cavonius Johansson, Hanna, Henriksson, Jens January 2019 (has links)
Stora arealer skog behöver övervakas. Att göra detta på ett kostnadseffektivt sätt är något som skogssektorn efterfrågar. Syftet med studien var att undersöka möjligheten att skatta skogliga variabler med satellitbilder från Sentinel 2. Korrelationen mellan granskogens uppmätta reflektans i satellitbilder från Sentinel 2 och uppmätta variablerna i fält har beräknats och analyserats. Resultatet visar att styrkan i korrelation skiljer sig mellan olika rumsliga upplösningar, vilken tid på året satellitbilderna är tagna, vilka spektrala band och vegetationsindex som används samt vilka skogliga variabler som avses uppskattas. Att använda enskilda satellitbilders värden från Sentinel 2 ger inte tillräckligt tillförlitliga data för att uppskatta skogliga variabler.
|
Page generated in 0.053 seconds