• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • Tagged with
  • 25
  • 25
  • 10
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Advances in enhanced multi-plane 3D imaging and image scanning microscopy

Mojiri, Soheil 22 November 2021 (has links)
No description available.
22

Monitoring drought impacts on grasslands in Central Europe by means of remote sensing time series

Kowalski, Katja 25 January 2024 (has links)
Grasländer sind wichtige Elemente der zentraleuropäischen Landschaft und stellen essenzielle Ökosystemdienstleistungen bereit. Dürren, welche durch den globalen Klimawandel zunehmen, haben negative Auswirkungen auf die Vitalität und Produktivität von Grasland. Satellitenmissionen wie Sentinel-2 und Landsat liefern große, bisher ungenutzte Möglichkeiten für das Grasland Monitoring. Ansätze auf Basis quantitativer Parameter, z.B. Prozentanteile von photosynthetisch aktiver Vegetation (PV), nicht photosynthetisch aktiver Vegetation (NPV) und Boden sind bisher für die Anwendung in zentraleuropäischen Grasländern nicht erforscht. Das Ziel der Arbeit war es, das Verständnis von Dürreeinflüssen auf zentraleuropäische Grasländer durch die Entwicklung eines fernerkundungsbasierten Monitoring Frameworks zu verbessern. Der erste Teil dieses Frameworks umfasste die Ableitung konsistenter Zeitreihen von PV-, NPV-, und Bodenanteilen. Der zweite Teil umfasste die Quantifizierung von Dürreeffekten anhand dieser Zeitreihen. Die Ergebnisse zeigten einen großflächigen, massiven und langanhaltenden Rückgang von Graslandvitalität in extremen Dürrejahren (z.B. 2003, 2018-2020). Robuste statistische Zusammenhänge bestätigten die starke Kopplung von Graslandvitalität und Dürre, insbesondere bei gleichzeitigen Hitzewellen. Zudem beeinflussten Bodeneigenschaften sowie klimatische und hydrologische Bedingungen die Dürresensitivität. Die Ergebnisse unterstreichen den Wert von generalisierten Entmischungsansätzen basierend auf Sentinel-2/Landsat Zeitreihen für großflächiges, quantitatives Monitoring von Grasland. Die Ergebnisse deuten darauf hin, dass durch den Klimawandel verstärkte Dürreereignisse in Zukunft erheblichen Einfluss auf die Vitalität von Grasländern in Zentraleuropa haben werden. Die hier gewonnenen Informationen liefern wichtige Beiträge zur Verbesserung von Dürremonitoring und können die Maßnahmenentwicklung zur Verringerung von Dürreschäden im Grasland unterstützen. / Grasslands are vital landscape elements in Central Europe providing essential ecosystem services. Drought events, which are increasing with global climate change, negatively affect grassland vitality and productivity. Satellite remote sensing missions such as Sentinel-2/Landsat offer untapped potential for monitoring grassland vitality. However, workflows for grassland monitoring based on fractional cover of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil, remain largely unexplored. The goal of this thesis was to advance the understanding of drought impacts on Central European grasslands by developing a framework for monitoring grassland vitality. The framework included the retrieval of consistent PV, NPV, and soil fractional cover time series from Landsat/Sentinel-2, which was achieved by implementing and generalizing an unmixing workflow. Second, drought impacts were quantified and evaluated based on fractional cover time series. Results showed large-scale, severe, and long-lasting negative impacts on grassland vitality in extreme drought years (e.g., in 2003, and 2018-2020). Robust statistical links confirmed the overall consistent coupling of grassland vitality to drought, specifically to compounding droughts and heatwaves. Spatiotemporal patterns of grassland drought sensitivity revealed that underlying factors such as soil features, and climatic and hydrological conditions modulate drought impacts on local to regional scales. Findings of this thesis emphasize the value of generalized unmixing workflows based on Sentinel-2/Landsat time series for quantitative grassland monitoring across large areas. Furthermore, results suggest that droughts amplified by climate change will pose substantial challenges for grassland vitality across Central European grasslands in the future. The findings provide a steppingstone towards improved drought monitoring and can thus inform adaptation efforts to alleviate drought impacts on grasslands.
23

Méthodes de démélange et de fusion des images multispectrales et hyperspectrales de télédétection spatiale / Unmixing and fusion methods for remote sensing multispectral and hypersectral images

Benhalouche, Fatima Zohra 03 May 2018 (has links)
Au cours de cette thèse, nous nous sommes intéressés à deux principales problématiques de la télédétection spatiale de milieux urbains qui sont : le "démélange spectral " et la "fusion". Dans la première partie de la thèse, nous avons étudié le démélange spectral d'images hyperspectrales de scènes de milieux urbains. Les méthodes développées ont pour objectif d'extraire, d'une manière non-supervisée, les spectres des matériaux présents dans la scène imagée. Le plus souvent, les méthodes de démélange spectral (méthodes dites de séparation aveugle de sources) sont basées sur le modèle de mélange linéaire. Cependant, lorsque nous sommes en présence de paysage non-plat, comme c'est le cas en milieu urbain, le modèle de mélange linéaire n'est plus valide et doit être remplacé par un modèle de mélange non-linéaire. Ce modèle non-linéaire peut être réduit à un modèle de mélange linéaire-quadratique/bilinéaire. Les méthodes de démélange spectral proposées sont basées sur la factorisation matricielle avec contrainte de non-négativité, et elles sont conçues pour le cas particulier de scènes urbaines. Les méthodes proposées donnent généralement de meilleures performances que les méthodes testées de la littérature. La seconde partie de cette thèse à été consacrée à la mise en place de méthodes qui permettent la fusion des images multispectrale et hyperspectrale, afin d'améliorer la résolution spatiale de l'image hyperspectrale. Cette fusion consiste à combiner la résolution spatiale élevée des images multispectrales et la haute résolution spectrale des images hyperspectrales. Les méthodes mises en place sont des méthodes conçues pour le cas particulier de fusion de données de télédétection de milieux urbains. Ces méthodes sont basées sur des techniques de démélange spectral linéaire-quadratique et utilisent la factorisation en matrices non-négatives. Les résultats obtenus montrent que les méthodes développées donnent globalement des performances satisfaisantes pour la fusion des données hyperspectrale et multispectrale. Ils prouvent également que ces méthodes surpassent significativement les approches testées de la littérature. / In this thesis, we focused on two main problems of the spatial remote sensing of urban environments which are: "spectral unmixing" and "fusion". In the first part of the thesis, we are interested in the spectral unmixing of hyperspectral images of urban scenes. The developed methods are designed to unsupervisely extract the spectra of materials contained in an imaged scene. Most often, spectral unmixing methods (methods known as blind source separation) are based on the linear mixing model. However, when facing non-flat landscape, as in the case of urban areas, the linear mixing model is not valid any more, and must be replaced by a nonlinear mixing model. This nonlinear model can be reduced to a linear-quadratic/bilinear mixing model. The proposed spectral unmixing methods are based on matrix factorization with non-negativity constraint, and are designed for urban scenes. The proposed methods generally give better performance than the tested literature methods. The second part of this thesis is devoted to the implementation of methods that allow the fusion of multispectral and hyperspectral images, in order to improve the spatial resolution of the hyperspectral image. This fusion consists in combining the high spatial resolution of multispectral images and high spectral resolution of hyperspectral images. The implemented methods are designed for urban remote sensing data. These methods are based on linear-quadratic spectral unmixing techniques and use the non-negative matrix factorization. The obtained results show that the developed methods give good performance for hyperspectral and multispectral data fusion. They also show that these methods significantly outperform the tested literature approaches.
24

Suitability of Aster and SRTM dems, and satellite imagery in detailed geomorphological mapping in Dzanani Area of Makhado Local Municipality, Limpopo Province, Republic of South Africa

Motene, Sylvia 21 September 2018 (has links)
MENVSC (Geography) / Department of Geography and Geo - Information Sciences / Detailed geomorphological mapping is important for monitoring environmental phenomena, it is therefore crucial that the methods employed for mapping are accurate. The basis of remote sensing for geomorphological work is moving from the consideration of whether satellite data are accurate for landform mapping to how surfaces of interest can be defined from remote sensing data, since earlier approaches of mapping are deemed costly and tedious. The aim of this study is to assess the suitability of ASTER and SRTM DEMs, and satellite imagery in detailed geomorphological mapping. Field survey and aerial photo interpretation were used to prepare a reference geomorphological map for comparisons. A similar approach of demarcating landform boundaries from aerial photographs was implemented to segment the DEMs into landform classes. The software packages that were used for processing the satellite data to create detailed geomorphological maps are QGIS with GRASS and SAGA plugins, and ENVI. The resultant geomorphological units’ maps from the DEMs when compared with the reference geomorphological map, show that the automated classification technique has advantages in terms of its efficiency and reproducibility. Nevertheless, distinct limitations of the technique are apparent and the technique is not suitable for detailed geomorphological mapping in the proposed study area. / NRF
25

Bayesian fusion of multi-band images : A powerful tool for super-resolution / Fusion Bayésienne des multi-bandes Images : Un outil puissant pour la Super-résolution

Wei, Qi 24 September 2015 (has links)
L’imagerie hyperspectrale (HS) consiste à acquérir une même scène dans plusieurs centaines de bandes spectrales contiguës (dimensions d'un cube de données), ce qui a conduit à trois types d'applications pertinentes, telles que la détection de cibles, la classification et le démélange spectral. Cependant, tandis que les capteurs hyperspectraux fournissent une information spectrale abondante, leur résolution spatiale est généralement plus limitée. Ainsi, la fusion d’une image HS avec d'autres images à haute résolution de la même scène, telles que les images multispectrales (MS) ou panchromatiques (PAN) est un problème intéressant. Le problème de fusionner une image HS de haute résolution spectrale mais de résolution spatiale limitée avec une image auxiliaire de haute résolution spatiale mais de résolution spectrale plus limitée (parfois qualifiée de fusion multi-résolution) a été exploré depuis de nombreuses années. D'un point de vue applicatif, ce problème est également important et est motivé par ceratins projets, comme par exemple le project Japonais HISIU, qui vise à fusionner des images MS et HS recalées acquises pour la même scène avec les mêmes conditions. Les techniques de fusion bayésienne permettent une interprétation intuitive du processus de fusion via la définition de la loi a posteriori de l’image à estimer (qui est de hautes résolutions spatiale et spectrale). Puisque le problème de fusion est généralement mal posé, l’inférence bayésienne offre un moyen pratique pour régulariser le problème en définissant une loi a priori adaptée à la scène d'intérêt. Les différents chapitres de cette thèse sont résumés ci-dessous. Le introduction présente le modèle général de fusion et les hypothèses statistiques utilisées pour les images multi-bandes observées, c’est-à-dire les images HS, MS ou PAN. Les images observées sont des versions dégradées de l'image de référence (à hautes résolutions spatiale et spectrale) qui résultent par exemple d’un flou spatial et spectral et/ou d’un sous-échantillonnage liés aux caractéristiques des capteurs. Les propriétés statistiques des mesures sont alors obtenues directement à partir d’un modèle linéaire traduisant ces dégradations et des propriétés statistiques du bruit. Le chapitre 1 s’intéresse à une technique de fusion bayésienne pour les images multi-bandes de télédétection, à savoir pour les images HS, MS et PAN. Tout d'abord, le problème de fusion est formulé dans un cadre d'estimation bayésienne. Une loi a priori Gaussienne exploitant la géométrie du problème est définie et un algorithme d’estimation Bayésienne permettant d’estimer l’image de référence est étudié. Pour obtenir des estimateurs Bayésiens liés à la distribution postérieure résultant, deux algorithmes basés sur échantillonnage de Monte Carlo et l'optimisation stratégie ont été développés. Le chapitre 2 propose une approche variationnelle pour la fusion d’images HS et MS. Le problème de fusion est formulé comme un problème inverse dont la solution est l'image d’intérêt qui est supposée vivre dans un espace de dimension résuite. Un terme de régularisation imposant des contraintes de parcimonie est défini avec soin. Ce terme traduit le fait que les patches de l'image cible sont bien représentés par une combinaison linéaire d’atomes appartenant à un dictionnaire approprié. Les atomes de ce dictionnaire et le support des coefficients des décompositions des patches sur ces atomes sont appris à l’aide de l’image de haute résolution spatiale. Puis, conditionnellement à ces dictionnaires et à ces supports, le problème de fusion est résolu à l’aide d’un algorithme d’optimisation alternée (utilisant l’algorithme ADMM) qui estime de manière itérative l’image d’intérêt et les coefficients de décomposition. / Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne hyperspectral image suite (HISUI), which fuses co-registered MS and HS images acquired over the same scene under the same conditions [YI13]. Bayesian fusion allows for an intuitive interpretation of the fusion process via the posterior distribution. Since the fusion problem is usually ill-posed, the Bayesian methodology offers a convenient way to regularize the problem by defining appropriate prior distribution for the scene of interest. The aim of this thesis is to study new multi-band image fusion algorithms to enhance the resolution of hyperspectral image. In the first chapter, a hierarchical Bayesian framework is proposed for multi-band image fusion by incorporating forward model, statistical assumptions and Gaussian prior for the target image to be restored. To derive Bayesian estimators associated with the resulting posterior distribution, two algorithms based on Monte Carlo sampling and optimization strategy have been developed. In the second chapter, a sparse regularization using dictionaries learned from the observed images is introduced as an alternative of the naive Gaussian prior proposed in Chapter 1. instead of Gaussian prior is introduced to regularize the ill-posed problem. Identifying the supports jointly with the dictionaries circumvented the difficulty inherent to sparse coding. To minimize the target function, an alternate optimization algorithm has been designed, which accelerates the fusion process magnificently comparing with the simulation-based method. In the third chapter, by exploiting intrinsic properties of the blurring and downsampling matrices, a much more efficient fusion method is proposed thanks to a closed-form solution for the Sylvester matrix equation associated with maximizing the likelihood. The proposed solution can be embedded into an alternating direction method of multipliers or a block coordinate descent method to incorporate different priors or hyper-priors for the fusion problem, allowing for Bayesian estimators. In the last chapter, a joint multi-band image fusion and unmixing scheme is proposed by combining the well admitted linear spectral mixture model and the forward model. The joint fusion and unmixing problem is solved in an alternating optimization framework, mainly consisting of solving a Sylvester equation and projecting onto a simplex resulting from the non-negativity and sum-to-one constraints. The simulation results conducted on synthetic and semi-synthetic images illustrate the advantages of the developed Bayesian estimators, both qualitatively and quantitatively.

Page generated in 0.3399 seconds