• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 67
  • 36
  • 18
  • 16
  • 7
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 412
  • 85
  • 80
  • 72
  • 58
  • 55
  • 52
  • 48
  • 44
  • 38
  • 33
  • 30
  • 29
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint

Wakeford, H. R., Sing, D. K., Deming, D., Lewis, N. K., Goyal, J., Wilson, T. J., Barstow, J., Kataria, T., Drummond, B., Evans, T. M., Carter, A. L., Nikolov, N., Knutson, H. A., Ballester, G. E., Mandell, A. M. 20 December 2017 (has links)
WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here, we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8-1.1 mu m) and G141 (1.1-1.7 mu m) spectroscopic grisms. We measure the predicted high-amplitude H2O feature centered at 1.4 mu m and the smaller amplitude features at 0.95 and 1.2 mu m, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3 to 5 mu m. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature T-eq = 1030(20)(+30) K, and atmospheric metallicity 151(46) (+48) solar, which is relatively high with respect to the currently established mass-metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.
72

Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets

Christiansen, Jessie L., Vanderburg, Andrew, Burt, Jennifer, Fulton, B. J., Batygin, Konstantin, Benneke, Björn, Brewer, John M., Charbonneau, David, Ciardi, David R., Cameron, Andrew Collier, Coughlin, Jeffrey L., Crossfield, Ian J. M., Dressing, Courtney, Greene, Thomas P., Howard, Andrew W., Latham, David W., Molinari, Emilio, Mortier, Annelies, Mullally, Fergal, Pepe, Francesco, Rice, Ken, Sinukoff, Evan, Sozzetti, Alessandro, Thompson, Susan E., Udry, Stéphane, Vogt, Steven S., Barman, Travis S., Batalha, Natasha E., Bouchy, François, Buchhave, Lars A., Butler, R. Paul, Cosentino, Rosario, Dupuy, Trent J., Ehrenreich, David, Fiorenzano, Aldo, Hansen, Brad M. S., Henning, Thomas, Hirsch, Lea, Holden, Bradford P., Isaacson, Howard T., Johnson, John A., Knutson, Heather A., Kosiarek, Molly, López-Morales, Mercedes, Lovis, Christophe, Malavolta, Luca, Mayor, Michel, Micela, Giuseppina, Motalebi, Fatemeh, Petigura, Erik, Phillips, David F., Piotto, Giampaolo, Rogers, Leslie A., Sasselov, Dimitar, Schlieder, Joshua E., Ségransan, Damien, Watson, Christopher A., Weiss, Lauren M. 31 August 2017 (has links)
HD 3167 is a bright (V = 8.9), nearby KO star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial-velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02 +/- 0.38 M-circle plus for HD 3167 b, a hot super-Earth with a likely rocky composition (rho(b) = 5.6(-1.43)(+2.15) g cm(-3)), and 9.80(-1.24)(+1.30) M-circle plus for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (rho(c) = 1.97(-0.59)(+0.94) g cm(-3)). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509 +/- 0.045 d (between planets b and c) and a minimum mass of 6.90 +/- 0.71 M-circle plus. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.degrees 3 because we do not observe transits of planet d. From 1.degrees 3 to 40 degrees, there are viewing geometries invoking special nodal configurations, which result in planet d not transiting some fraction of the time.
73

The TWA 3 Young Triple System: Orbits, Disks, Evolution

Kellogg, Kendra, Prato, L., Torres, Guillermo, Schaefer, G. H., Avilez, I., Ruíz-Rodríguez, D., Wasserman, L. H., Bonanos, Alceste Z., Guenther, E. W., Neuhäuser, R., Levine, S. E., Bosh, A. S., Morzinski, Katie M., Close, Laird, Bailey, Vanessa, Hinz, Phil, Males, Jared R. 03 August 2017 (has links)
We have characterized the spectroscopic orbit of the TWA 3A binary and provide preliminary families of probable solutions for the TWA 3A visual orbit, as well as for the wide TWA 3A-B orbit. TWA 3 is a hierarchical triple located at 34 pc in the similar to 10 Myr old TW Hya association. The wide component separation is 1."55; the close pair was first identified as a possible binary almost 20 years ago. We initially identified the 35-day period orbital solution using high-resolution infrared spectroscopy that angularly resolved the A and B components. We then refined the preliminary orbit by combining the infrared data with a reanalysis of our high-resolution optical spectroscopy. The orbital period from the combined spectroscopic solution is similar to 35 days, the eccentricity is similar to 0.63, and the mass ratio is similar to 0.84; although this high mass ratio would suggest that optical spectroscopy alone should be sufficient to identify the orbital solution, the presence of the tertiary B component likely introduced confusion in the blended optical spectra. Using millimeter imaging from the literature, we also estimate the inclinations of the stellar orbital planes with respect to the TWA 3A circumbinary disk inclination and find that all three planes are likely misaligned by at least similar to 30 degrees. The TWA 3A spectroscopic binary components have spectral types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as a triple, is bound, and that its properties were shaped by dynamical interactions between the inclined orbits and disk.
74

Raman spectroscopy applied to iron oxide pigments from waste materials and earthenware archaeological objects

Legodi, Malebogo Andries 06 June 2008 (has links)
Raman spectroscopy is a vibrational spectroscopic technique. It gives a unique combination of non-destructive analysis, high spatial resolution and phase characterisation. In the current study Raman spectroscopy was used as the primary technique during the study of chemical components in archaeological earthenware samples (i.e. low temperature fired clay pottery) of South African and Chinese origin, and characterisation of iron oxides derived from mill scale. One shard from each of the South African archaeological sites (Rooiwal, Lydenburg, Makahane and Graskop) was analysed by Raman spectroscopy, FT-IR spectroscopy, X-ray fluorescence (XRF) spectroscopy and X-ray diffractometry (XRD). The common features observed were montmorillonite (Mg3(Si,Al)4(OH)2.4.5H2O[Mg]0.35), kaolin (Al2Si2O5(OH)5), quartz (α-SiO2), feldspar (K- and NaAlSi3O8), hematite (α-Fe2O3), calcium silicate (CaSiO3) and illite (KAl4(Si7AlO20)(OH)4). Gypsum (CaSO4.2H2O) and calcium carbonates (CaCO3) were detected in Lydenburg, Makahane and Graskop shards. Amorphous carbon was observed in Lydenburg and Makahane shards while rutile appeared only in Makahane shard. The Lydenburg and Rooiwal shards showed the presence of anhydrite (CaSO4). The Chinese clay samples investigated by Raman spectroscopy were from the J A Van Tilburg museum at the University of Pretoria. The large red shard was recovered from the 1552 Portuguese shipwreck, São João, found around Port Edward, South Africa. Four other shards (two red and two gray) were recovered from the 1622 Portuguese shipwreck, the São João Baptista, found around Kenton-on-Sea off the South African coast. A 19th century Chinese teapot was also analysed. Hematite, kaolin, quartz, amorphous carbon and aluminosilicates were observed in all three red shards. All these components, except quartz, were also observed in the teapot. The gray shards showed the presence of quartz, kaolin, amorphous carbon and aluminosilicates. The pigments identified were hematite (in red samples) and black amorphous carbon (in all samples). Magnetite and goethite were precipitated from mill scale-derived precursors in aqueous media. Hematite was then prepared from the calcination of goethite at 750°C and maghemite from the thermal treatment of magnetite at 200°C. The iron oxides were characterised by Raman spectroscopy, XRD, surface area determination and scanning electron microscopy (SEM). They were generally composed of very small sized particles showing high surface area values. / Thesis (PHD)--University of Pretoria, 2008. / Chemistry / unrestricted
75

Raman spectroscopic studies of the underglaze pigments of porcelain shards of archaeological origins

Kock, L.D. (Lesotlho David) 06 June 2010 (has links)
The technique of Raman spectroscopy was used in a study of shards of known (Ming and Meissen) and unknown (archaeological) origin. A tile shard from the Citadel of Algiers was included in this study as further confirmation of the consistency of the methods that are developed. The Citadel from which the tile shard was obtained was built in 1516 and represents a landmark from pre-colonial Algeria. The results were compared with those obtained from studies on intact museum pieces of known (Ming) origin. A consistent method of studying underglaze pigments on glazed ceramic artifacts by directing the laser beam through the predominantly silicate glaze was developed. The glaze depth profiling method developed proved to be very useful in the analysis and gives not only a detailed composition for the glaze/ceramic interfacial pigment, but also the order in which the various interfacial pigment layers were applied at the time of manufacture. The information acquired leads to an understanding of the level of technological development of the manufacturers. The detailed study and characterisation of the pigments that were analysed in this way gives insight into trade relations among ancient societies of the Mediterranean and will also assist archaeologists in establishing cut-off dates for the archaeological sites from which the artifacts were recovered. All the shards, except one from Meissen (Germany), were provided by the National Cultural History Museum of South Africa and the intact Ming dynasty plates were provided by the J.A. van Tilburg Museum of the University of Pretoria. The tile shard sample from the Citadel of Algiers was donated for the study. The results indicate that none of the archaeological shards could possibly be of Ming dynasty origin based on, firstly, the use of amorphous carbon to darken the cobalt blue (CoAl2O4) used as decoration on the shards, and secondly on the use of white (synthetic) anatase to whiten the ceramic surface before the application of the pigment since this synthetic anatase is known to have been manufactured for the first time around 1920. An ancient rediscovered ternary pigment (Pb2SnSbO6.5) previously found on Italian paintings of the 16th century, for example, “Lot and his daughters” by G.B. Langetti and “Entrance of Christ in Jerusalem” by Luca Giordano, was identified on the Citadel tile and successfully characterised. A Pb-O vibrational Raman band at 127 cm-1 for this pigment was assigned for the first time. Additional pigments identified on the tile include Naples yellow (Pb2Sb2O7), lead (II) stannate (Pb2SnO4), cobalt blue (CoAl2O4) and cassiterite (SnO2). The bulk of the tile body is composed mainly of hematite (á-Fe2O3), maghemite (ã-Fe2O3), magnetite (Fe3O4) and quartz (á-SiO2), with traces of calcite (CaCO3) and amorphous carbon. The unique non destructive depth profiling method that was developed in this study can now be applied to the study of underglaze pigments on intact porcelain artifacts in museums and private collections around the world for authentication purposes and for comparison with archaeological shard samples. / Thesis (PhD)--University of Pretoria, 2010. / Chemistry / unrestricted
76

Sharp Polarimetric Eyes: More Trees than Forest?

Smith, Paul 07 September 2016 (has links)
The Fermi Gamma-ray Space Telescope (Fermi) has focused the intensive multi-wavelength and international observational effort on blazars since it was launched in 2008. Part of this effort involves systematic monitoring of the highly variable polarization of the continuum emission from these objects. These observations are valuable in that they provide direct information on the degree of ordering and orientation on the sky of the magnetic field within the non-thermal emission region(s). Unfortunately, it is not yet possible to measure the polarization of the inverse-Compton continuum, only that of the lower-energy synchrotron emission. The inability to directly compare the polarization of the two dominant continuum sources in blazars is a drawback and leads to more ambiguities in determining their relative locations. There are many compelling examples of strong connections between -ray, X-ray, UV/optical/IR, and radio behavior in blazars that suggest the same region produces much of the observed emission at all wavelengths at least some of the time. However, the wealth of polarization behavior seen relative to flux changes invariably results in a complex situation that is difficult to interpret and model. The long-term blazar monitoring program undertaken at Steward Observatory is designed to primarily obtain accurate optical polarimetry of -ray-bright blazars during the Fermi mission with the goal of gaining important insights into the jet structure and physics of these objects. Data from this program are available to all researchers as soon as reductions are completed. I briefly detail the current status and progress of the program and the data products available. Although the wide variety of polarization behavior in blazars adds another layer of complexity to an already difficult problem, I summarize several important conclusions that can be drawn from the polarization information gathered during the Fermi era.
77

Sledování změny pH v systému fázově separovaných hydrogelů / Monitoring the pH change in the phase-separated hydrogel systems

Heger, Richard January 2018 (has links)
This thesis pursues monitoring of pH changes and description of properties in phase–separated hydrogels prepared by interaction of polyelectrolyte and oppositely charged surfactants. For the purposes of this work, all hydrogels were prepared by the interaction of hyaluronan with Septonex. All hydrogels were exposed to pH changes (4–9). Changes in pH were being monitored using spectroscopic indicators, methyl orange, methyl red, bromothymol blue and phenolphtalein. The pre– and post– pH changes in properties were compared using rheological methods. Additional information was gathered through thermogravimetric analysis. By these methods it was proved that the changes in the pH can modify the mechanical properties and partly the internal structure of the hydrogels. Rheological tests show, that from the application point of view, the most interesting hydrogels are observed at pH 9 which have the strongest bonds but have low permeability and hydrogels described at pH 7 which are much softer and are capable of absorbing large amounts of water.
78

Spectroscopic Properties of Polycyclic Aromatic Compounds

Tucker, Sheryl A. (Sheryl Ann) 05 1900 (has links)
The fluorescence spectrum of many polycyclic aromatic compounds (PACs) depends upon solvent polarity. The emission spectrum of PAC monomers consists of several major vibronic bands labeled I, II, etc., in progressive order. Emission intensity enhancement of select bands is observed in polar solvents.
79

Can We Detect Clumpiness in Supernova Ejecta?

Hole, Tabetha, Boom, Charla 29 May 2012 (has links)
Polarization is detected at early times for all types of supernovae, indicating that all such systems are, or quickly become, asymmetric. Spectropolarimetric observations also show that the asymmetry varies in both magnitude and orientation for different elements in the ejecta. One explanation for these observations is that local chemical inhomogeneities (called clumps) exist in the ejecta above the region where the continuum forms. To examine the effects of clumpiness on observations, I will present results of a comparison between a fast, flexible, approximate semi-analytic code for modeling polarized line radiative transfer within three-dimensional inhomogeneous rapidly expanding atmospheres; and VLT spectropolarimetric observations of SN2006X.
80

FIRST PRINCIPLES MODELING AND TIME-RESOLVED CIRCULAR DICHROISM SPECTROSCOPY OF THE FENNA-MATTHEWS-OLSON COMPLEX

Zachary A. Mitchell (5930054) 06 December 2022 (has links)
<p>The Fenna-Matthews-Olson (FMO) complex is a photosynthetic pigment-protein complex that has been the subject of study of decades of research, both experimental and theoretical. The FMO complex is small enough that computational modeling is feasible, while the rich excitonic interactions between the pigments give rise to absorption and circulardichroism (CD) spectra with many interesting details. This makes FMO an excellent testing ground for new predictive modeling techniques.</p> <p><br></p> <p>In this work we model the FMO complex from first-principles, wherein the only input is the X-ray crystal structure of the protein. We compute steady-state absorption and CD spectra of wild-type (WT) FMO as well as two mutants, Y16F and Q198V, in which amino acid residues near pigment 3 and pigment 7 are replaced respectively. CD spectra contain extra structural information and thus provide another avenue of investigation into the electronic properties of the FMO complex. We find that while there are large structural changes in the mutants, not all of the structural changes produce significant spectral changes. We conclude that the primary contributor to the spectral changes in Y16F is the breaking of a hydrogen bond between the nearby tyrosine and pigment 3. On the other hand, the spectral changes in Q198V are due to a collection of effects cancelling one another out to varying degrees, all induced by widespread structural changes as a result of the mutation.</p> <p><br></p> <p>We then perform time-resolved absorption and CD spectroscopy measurements on WT, Y16F, and Q198V FMO to provide a high quality set of experimental data against which the first-principles spectra can be validated. We find that in order to accurately model the triplet energy transfer dynamics in FMO two effects must be accounted for in the modeling: (1) the Stark shift caused by the rotation of the bacteriochlorophyll’s permanent dipole moment upon entering a triplet state, and (2) decays must be modeled as Boltzmann populations rather than individual pigments.</p>

Page generated in 0.0812 seconds