Spelling suggestions: "subject:"dpectroscopy raman"" "subject:"dpectroscopy saman""
41 |
Strain, charge carriers, and phonon polaritons in wurtzite GaN - a Raman spectroscopical viewRöder, Christian 30 September 2014 (has links)
Die vorliegende Dissertation befasst sich mit der ramanspektroskopischen Charakterisierung von Galliumnitrid (GaN). Der Zusammenhang zwischen Waferkrümmung und mechanischer Restspannungen wird diskutiert. Mit Hilfe konfokaler Mikro-Ramanmessungen wurden Dotierprofile nachgewiesen sowie die Ladungsträgerkonzentration und -beweglichkeit ermittelt. Sämtliche Ramantensorelemente von wz-GaN wurden erstmals durch die Anwendung verschiedener Streugeometrien bestimmt. Eine neu entwickelte Vorwärtsstreuanordnung ermöglichte die Beobachtung von Phonon-Polaritonen. Es konnte gezeigt werden, dass von der theoretischen und experimentellen Betrachtung der Ramanstreuintensitäten dieser Elementaranregungen eindeutig das Vorzeichen der Faust-Henry-Koeffizienten von wz-GaN abgeleitet werden kann. Im Rahmen dieser Arbeit wurden alle Faust-Henry-Koeffizienten für GaN experimentell bestimmt. / This thesis focuses on special aspects of the Raman spectroscopical characterization of wurtzite gallium nitride (wz-GaN). The correlation between wafer curvature and residual stress is discussed. By means of confocal micro-Raman measurements doping profiles were detected as well as the density and mobility of free charge carriers were deduced. All Raman scattering cross sections of wz-GaN were determined the first time using different scattering configurations. A novel method for near-forward scattering was developed in order to observe phonon polaritons with pure symmetry. It is shown that the theoretical and experimental consideration of the Raman scattering efficiency of these elementary excitations allow for determining the sign of the Faust-Henry coefficients of wz-GaN unambiguously. The Faust-Henry coefficients of GaN were deduced from Raman scattering efficiencies of corresponding TO and LO phonons.
|
42 |
Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite FilmsMüller, Christian, Al-Hamry, Ammar, Kanoun, Olfa, Rahaman, Mahfujur, Zahn, Dietrich R. T., Matsubara, Elaine Yoshiko, Rosolen, José Mauricio 14 February 2019 (has links)
We have investigated single-walled carbon nanotube (SWCNT) networks wrapped with the cationic surfactant sodium dodecyl-benzenesulfonate (SBDS) as promising candidates for water detection. This is the first time that the humidity behavior of endohedral Li-doped (Li@) and undoped SWCNTs/SDBS has been shown. We identified a strong and almost monotonic decrease in resistance as humidity increased from 11 to 97%. Sensitivities varied between −3 and 65% in the entire humidity range. Electrical characterization, Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) analysis revealed that a combination of the electron donor behavior of the water molecules with Poole-Frenkel conduction accounted for the resistive humidity response in the Li@SWCNT/SDBS and undoped SWCNT/SDBS networks. We found that Li@SWCNTs boosted the semiconducting character in mixtures of metallic/semiconducting SWCNT beams. Moreover, electrical characterization of the sensor suggested that endohedral Li doping produced SWCNT beams with high concentration of semiconducting tubes. We also investigated how frequency influenced film humidity sensing behavior and how this behavior of SWCNT/SDBS films depended on temperature from 20 to 80 ∘ C. The present results will certainly aid design and optimization of SWCNT films with different dopants for humidity or gas sensing in general.
|
43 |
Advanced Raman, SERS, and ROA studies of biomedical and pharmaceutical compounds in solutionLevene, Clare January 2012 (has links)
The primary purpose of this study was to investigate the combination of experimental and computational methods in the search for reproducible colloidal surface-enhanced Raman scattering of pharmaceutical compounds. In the search for optimal experimental conditions for colloidal surface-enhance Raman scattering, the amphipathic β-blocker propranolol was used as the target molecule. Fractional factorial designs of experiments were performed and a multiobjective evolutionary algorithm was used to find acceptable solutions, from the results, that were Pareto ranked. The multiobjective evolutionary algorithm suggested solutions outside of the fractional factorial design and the experiments were then performed in the laboratory. The results observed from the suggested solutions agreed with the solutions that were found on the Pareto front. One of the experimental conditions observed on the Pareto front was then used to determine the practical limit of detection of propranolol. The experimental conditions that were chosen for the limit of detection took into account reproducibility and enhancement, the two most important parameters for analytical detection using surface-enhanced Raman scattering. The principal conclusion to this study was that the combination of computational and experimental methods can reduce the need for experiments by > 96% and then selecting solutions from the Pareto front improved limit of detection by a factor of 24.5 when it was compared to the previously reported limit of detection for propranolol. Using the same experimental conditions that were used for the limit of detection, these experiments were extended to plasma spiked with propranolol in order to test detection of this pharmaceutical in biofluids. Concentrations of propranolol were prepared using plasma as the solvent and measured for detection using colloidal surface-enhanced Raman scattering. Detection was determined as <130 ng/mL, within physiological concentrations, previously achieved using separation techniques. The second part of this thesis also involved a combination of experimental and computational methods. Raman optical activity was utilized to investigate secondary structure of amino acids and diamino acid peptides in combination with density functional theory calculations. Amino acids are important biological molecules that have vital functions in the biological system. They have been recognized as neurotransmitters and implicated in neurodegenerative diseases. Raman and Raman optical activity experimental results were compared to determine site-specific acetylation, marker bands for constitutional isomers and identification of functional groups that interact with the solvent. The experimental spectra were then compared to those from the density functional theory calculations. The results indicated that; constitutional isomers cannot be distinguished from the Raman spectra but can be distinguished from the Raman optical activity spectra, site-specific acetylation can be identified from the Raman spectra, however, Raman optical activity provides more structural information in relation to acetylation. When the results were compared to the density functional theory calculations for the diamino acid peptides the results agreed reasonably well, however, agreement was not as good for the monoamino acids because diamino acid peptides support fewer conformations due to the peptide bond whereas monoamino acids can adopt a far greater number of conformations. Combined computational and experimental techniques have developed the ability to detect and characterize biomedical compounds, a significant move in the advancement of Raman spectroscopies.
|
44 |
On Ternary Phases of the Systems RE–B–Q (RE = La – Nd, Sm, Gd – Lu, Y; Q = S, Se)Borna, Marija 13 August 2012 (has links)
It is known that boron containing compounds exhibit interesting chemical and physical properties. In the past 50 years modern preparative methods have led to an overwhelming number of different structures of novel and often unexpected boron–sulfur and boron–selenium compounds. Among all these new compounds, there was only one which comprises rare earth metal (RE), boron and heavier chalcogen, namely sulfur, the europium thioborate Eu[B2S4] [1]. Selenoborates of rare earth metals are hitherto unknown. On the other hand, rare earth oxoborates represent a well-known class of compounds [2] with a wide range of applications, especially in the field of optical materials. In addition, well-defined boron compounds containing the heavier group 16 elements are fairly difficult to prepare due to the high reactivity of in situ formed boron chalcogenides towards most container materials at elevated temperatures. The chalcogenoborates of the heavier chalcogens are sensitive against oxidation and hydrolysis and therefore have to be handled in an inert environment. Therefore, developing and optimization of preparative routes for the syntheses of pure and crystalline RE thio- and selenoborates was needed.
In the course of this study, the application of different preparation routes, such as optimized high-temperature routes (HT), metathesis reactions and high-pressure high-temperature routes (Hp – HT), led to sixteen new rare earth thioborates. Their crystal structures were solved and/or refined from powder and single crystal X-ray diffraction data, while the local structure around rare earth metal was confirmed from the results of the EXAFS analyses. Quantum mechanical calculations were used within this work in order to investigate the arrangement of intrinsic vacancies on the boron sites in the crystal structures of rare earth thioborates. Thermal, magnetic and optical properties of these compounds are also discussed.
The rare earth thioborates discovered during this work are the first examples of ternary thioborates containing trivalent cations. These compounds can be divided into two groups of isotypic compounds: the rare earth orthothioborates with general formula REIII[BS3] (RE = La – Nd, Sm, Gd and Tb) [3] and the rare earth thioborate sulfides with general formula REIII¦9B5S21, (RE = Gd – Lu, and Y) [4].
In the crystal structure of RE[BS3] (orthorhombic, space group Pna21, Z = 4), the sulfur atoms form the vertices of corrugated kagome nets, within which every second triangle is occupied by boron and the large hexagons are centered by RE cations. The structural features of the isotypic RE[BS3] phases show great similarities to those of rare earth oxoborates RE[BO3] and orthothioborates of alkali and alkaline earth metals as well as to thallium orthothioborate, yet pronounced differences are also observed: the [BS3]3– groups in the crystal structures of RE[BS3] are more distorted, where the distortion decreases with the decreasing size of the RE element, and the coordination environments of the [BS3]3– groups in the crystal structures of RE[BS3] are different in comparison with the coordination environments of the [BO3]3– groups in the crystal structures of λ-Nd[BO3] [5] and of o-Ce[BO3] [6].
The results of the IR and Raman investigations are in agreement with the presence of [BS3]3– anions in the crystal structure of RE[BS3]. Thermal analyses revealed the thermal stability of these compounds under inert conditions up to ~ 1200 K. Analyses of the magnetic properties of the Sm, Gd and Tb thioborates showed that both Gd and Tb phases order antiferromagnetically. The magnetic susceptibility for Sm orthothioborate approximately follows the Van-Vleck theory for Sm3+. Between 50 K and 62 K a transition appears which is independent of the magnetic field: the magnetic susceptibility becomes lower. This effect might indicate a discontinuous valence transition of Sm which was further investigated by means of XANES and X-ray diffraction using synchrotron radiation, both at low temperatures.
The series of isotypic RE thioborate sulfides with composition RE9B5S21, was obtained by the application of Hp – HT conditions to starting mixtures with the initial chemical composition “REB3S6“, after careful optimization of the pressure, temperature and treatment time, as well as the composition of the starting mixtures. Their crystal structures adopt the Ce6Al3.33S14 [7] structure type (hexagonal, space group P63, Z = 2/3). The special features of the RE9B5S21 crystal structures, concerning boron site occupancies and different coordination environments of the two crystallographically independent boron sites, were investigated in more detail by means of quantum chemical calculations, electron diffraction methods, optical and X-ray absorption spectroscopy as well as by 11B NMR spectroscopy. The results obtained from these different experimental and computational methods are in good mutual agreement. The crystal structures of the RE9B5S21 compounds are characterized by two types of anions: tetrahedral [BS4]5– and trigonal planar [BS3]3– as well as [(S2–)3] units. Isolated [BS4]5– tetrahedra (all pointing with one of their apices along the polar [001] direction) represent a unique feature of the crystal structure which is observed for the first time in a thioborate compound. These tetrahedra are stacked along the three-fold rotation axes. Vacancies are located at the trigonal-planar coordinated boron site with preferred ordering –B–B––B–B–– along [001]. No superstructure is observed by means of electron diffraction methods as adjacent columns are shuffled along the c axis, giving rise to a randomly distributed vacancy pattern. Positions of the sulfur atoms within the [(S2–)3] substructure as well as planarity of the [BS3]3– units were investigated in more detail by means of quantum mechanical calculations.
Results of the IR and Raman spectroscopy, as well as of the 11B NMR spectroscopy are in agreement with the presence of the boron atoms in two different coordination environments. Thermal analyses showed that compounds RE9B5S21 are stable under inert conditions up to ~ 1200 K. In accordance with the combined results of experimental and computational investigations, the chemical formula of the RE9B5S21 compounds is consistent with RE3[BS3]2[BS4]3S3.
A short overview of investigations towards rare earth selenoborates, where in most of the cases only known binary rare earth selenides could be identified, is presented as well in this work. Investigations in the RE–B–Se systems were conducted by the application of different preparation routes by varying the experimental parameters and the initial compositions of the starting mixtures. Although no crystal structure of a ternary phase in these systems could be solved, there are indications that such phases exist, but further investigations are needed.
[1] M. Döch, A. Hammerschmidt, B. Krebs, Z. Anorg. Allg. Chem., 2004, 630, 519.
[2] H. Huppertz, Chem. Commun., 2011, 47, 131; and references therein.
[3] J. Hunger, M. Borna, R. Kniep, J. Solid State Chem., 2010, 182, 702; J. Hunger, M. Borna, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 217; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 223; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 225.
[4] M. Borna, J. Hunger, A. Ormeci, D. Zahn, U. Burkhardt, W. Carrillo-Cabrera, R. Cardoso-Gil, R. Kniep, J. Solid State Chem., 2011, 184, 296;
[5] H. Müller-Bunz, T. Nikelski, Th. Schleid, Z. Naturforsch. B, 2003, 58, 375.
[6] H. U. Bambauer, J. Weidelt, J.-St. Ysker, Z. Kristallogr., 1969, 130, 207.
[7] D. de Saint-Giniez, P. Laruelle, J. Flahaut, C. R. Séances, Acad. Sci. Ser. C, 1968, 267, 1029.:I INTRODUCTION ......................................................................... 7
1. Motivation and scope of the work .............................................. 9
2. Literature overview .................................................................. 11
2.1. The binary subsystems of the ternary systems RE–B–Q (RE = rare earth metals, Y; Q = S, Se) ......................................................... 12
2.1.1. RE–Q ............................................................................... 12
2.1.2. RE–B ............................................................................... 19
2.1.3. B–Q ................................................................................. 22
2.2. Related ternary compounds ................................................... 25
2.2.1. RE oxoborates .................................................................. 25
2.2.2. Thio- and selenoborates of alkaline, alkaline earth, transition and post
transition metals ......................................................................... 33
2.2.3. The RE thioborate Eu[B2S4]................................................ 45
II PREPARATIVE METHODS AND EXPERIMENTAL TECHNIQUES .......... 47
1. Starting materials and their characterization ............................... 49
2. Synthetic approaches and optimizations .................................... 51
2.1. High-temperature routes ...................................................... 52
2.2. Metathesis reactions ............................................................ 53
2.3. Spark Plasma Sintering (SPS) ............................................... 54
2.4. High-Pressure High-Temperature (Hp – HT) Syntheses ........... 55
3. Analytical methods and samples characterization ....................... 55
3.1. Powder X-ray diffraction ...................................................... 55
3.2. Crystal structure investigations using synchrotron radiation .... 57
3.3. Single crystal X-ray diffraction analysis .................................. 57
3.4. Metallographic investigations ................................................ 58
3.5. Electron microscopy ............................................................ 58
3.5.1. Scanning electron microscopy and energy dispersive X-ray spectroscopy ............................................................................ 58
3.5.2. Transmission electron microscopy ...................................... 59
3.6. Optical spectroscopy ........................................................... 59
3.6.1. Infra-Red spectroscopy .................................................... 59
3.6.2. Raman spectroscopy ........................................................ 60
3.7. X-ray absorption spectroscopy ............................................ 60
3.8. Thermal analysis ................................................................. 62
3.9. Magnetic susceptibility measurements ................................... 63
3.10. 11B NMR spectroscopy ..................................................... 63
3.11. Quantum chemical calculations ........................................... 64
3.11.1. Total energy calculations ................................................ 64
3.11.2. Charge transfer analysis ................................................ 64
3.11.3. Chemical bonding........................................................... 64
III RARE EARTH THIOBORATES ................................................. 67
1. Reinvestigation of the only reported rare earth thioborate – EuB2S4 ....69
2. RE[BS3] (RE = La – Nd, Sm, Gd, Tb) .................................... 69
2.1. Syntheses and phase analyses .......................................... 70
2.2. Crystal structure determinations ........................................ 74
2.3. X-ray absorption spectroscopy: EXAFS data analysis for Pr[BS3] ..... 79
2.4. Crystal chemistry .............................................................. 80
2.5. Optical spectroscopy ......................................................... 83
2.6. Thermal analysis ............................................................... 86
2.7. Magnetic susceptibility ....................................................... 88
2.8. X-ray absorption spectroscopy: XANES data analysis for Sm[BS3] .. 91
2.9. Crystal structure investigation at low temperature using synchrotron radiation ................................................................................... 91
2.10. Summary ......................................................................... 95
3. Gd[BS3] : Ce, Eu, Tb ............................................................. 97
3.1. Syntheses and phase analyses ............................................. 97
3.2. Crystal structure determinations ......................................... 101
3.3. Crystal chemistry .............................................................. 103
3.4. Optical spectroscopy ......................................................... 104
3.5. Thermal analysis ............................................................... 106
3.6. Summary ......................................................................... 107
4. RE9B5S21 (RE = Tb – Lu, Y) ................................................ 107
4.1. Syntheses and phase analyses ........................................... 108
4.2. Crystal structure determinations ........................................ 109
4.3. Crystal chemistry .............................................................. 112
4.4. Electronic structure, charge transfer and chemical bonding .... 115
4.5. X-ray absorption spectroscopy: EXAFS data analysis for Lu9B5S21 .............................................................................. 119
4.6. Thermal analysis ............................................................... 121
4.7. 11B NMR investigations ..................................................... 122
4.8. Optical spectroscopy ......................................................... 123
4.9. Summary ......................................................................... 126
IV ON THE WAY TO RARE EARTH SELENOBORATES .................... 127
1. Towards ternary phases in the systems RE–B–Se, with RE = Sm, Tb – Lu.......................................................................................... 129
2. The system La–B–Se ........................................................... 134
3. The system Gd–B–Se .......................................................... 136
4. The system Y–B–Se ............................................................ 137
5. Summary ........................................................................... 139
V SUMMARY AND OUTLOOK ..................................................... 141
VI APPENDIX .......................................................................... 149
VII REFERENCES .................................................................... 163
VIII LIST OF FIGURES ............................................................. 181
IX LIST OF TABLES ................................................................ 193
X CURRICULUM VITAE ........................................................... 199
XI VERSICHERUNG ............................................................... 203
|
Page generated in 0.0603 seconds