• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 9
  • 3
  • 1
  • 1
  • Tagged with
  • 104
  • 104
  • 78
  • 70
  • 61
  • 42
  • 21
  • 19
  • 15
  • 15
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

On the Performance of Underlay Cognitive Radio Networks with Interference Constraints and Relaying

Kabiri, Charles January 2015 (has links)
Efficiently allocating the scarce and expensive radio resources is a key challenge for advanced radio communication systems. To this end, cognitive radio (CR) has emerged as a promising solution which can offer considerable improvements in spectrum utilization. Furthermore, cooperative communication is a concept proposed to obtain spatial diversity gains through relays without requiring multiple antennas. To benefit from both CR and cooperative communications, a combination of CR networks (CRNs) with cooperative relaying referred to as cognitive cooperative relay networks (CCRNs) has recently been proposed. CCRNs can better utilize the radio spectrum by allowing the secondary users (SUs) to opportunistically access spectrum, share spectrum with primary users (PUs), and provide performance gains offered by cooperative relaying. In this thesis, a performance analysis of underlay CRNs and CCRNs in different fading channels is provided based on analytical expressions, numerical results, and simulations. To allocate power in the CCRNs, power allocation policies are proposed which consider the peak transmit power limit of the SUs and the outage probability constraint of the primary network. Thus, the impact of multiuser diversity, peak transmit power, fading parameters, and modulation schemes on the performance of the CRNs and CCRNs can be analyzed. The thesis is divided into an introduction and five research parts based on peer-reviewed conference papers and journal articles. The introduction provides fundamental background on spectrum sharing systems, fading channels, and performance metrics. In the first part, a basic underlay CRN is analyzed where the outage probability and the ergodic capacity of the network over general fading channels is derived. In the second part, the outage probability and the ergodic capacity of an underlay CRN are assessed capturing the effect of multiuser diversity on the network subject to Nakagami-m fading. Considering the presence of a PU transmitter (PU-Tx), a power allocation policy is derived and utilized for CRN performance analysis under Rayleigh fading. In the third part, the impact of multiple PU-Txs and multiple PU receivers (PU-Rxs) on the outage probability of an underlay CCRN is studied. The outage constraint at the PU-Rx and the peak transmit power constraint of the SUs are taken into account to derive the power allocation policies for the SUs. In the fourth part, analytical expressions for the outage probability and symbol error probability for CCRNs are derived where signal combining schemes at the SU receiver (SU-Rx) are compared. Finally, the fifth part applies a sleep/wake-up strategy and the min(N; T) policy to an underlay CRN. The SUs of the network operate as wireless sensor nodes under Nakagami-m fading. A power consumption function of the CRN is derived. Further, the impact of M/G/1 queue and fading channel parameters on the power consumption is assessed.
32

Cognitive MAC protocols for mobile ad-hoc networks

Masrub, Abdullah Ashur January 2013 (has links)
The term of Cognitive Radio (CR) used to indicate that spectrum radio could be accessed dynamically and opportunistically by unlicensed users. In CR Networks, Interference between nodes, hidden terminal problem, and spectrum sensing errors are big issues to be widely discussed in the research field nowadays. To improve the performance of such kind of networks, this thesis proposes Cognitive Medium Access Control (MAC) protocols for Mobile Ad-Hoc Networks (MANETs). From the concept of CR, this thesis has been able to develop a cognitive MAC framework in which a cognitive process consisting of cognitive elements is considered, which can make efficient decisions to optimise the CR network. In this context, three different scenarios to maximize the secondary user's throughput have been proposed. We found that the throughput improvement depends on the transition probabilities. However, considering the past information state of the spectrum can dramatically increases the secondary user's throughput by up to 40%. Moreover, by increasing the number of channels, the throughput of the network can be improved about 25%. Furthermore, to study the impact of Physical (PHY) Layer errors on cognitive MAC layer in MANETs, in this thesis, a Sensing Error-Aware MAC protocols for MANETs has been proposed. The developed model has been able to improve the MAC layer performance under the challenge of sensing errors. In this context, the proposed model examined two sensing error probabilities: the false alarm probability and the missed detection probability. The simulation results have shown that both probabilities could be adapted to maintain the false alarm probability at certain values to achieve good results. Finally, in this thesis, a cooperative sensing scheme with interference mitigation for Cognitive Wireless Mesh Networks (CogMesh) has been proposed. Moreover, a prioritybased traffic scenario to analyze the problem of packet delay and a novel technique for dynamic channel allocation in CogMesh is presented. Considering each channel in the system as a sub-server, the average delay of the users' packets is reduced and the cooperative sensing scenario dramatically increases the network throughput 50% more as the number of arrival rate is increased.
33

Cognitive radio systems in LTE networks

Al-Dulaimi, Anwer January 2012 (has links)
The most important fact in the mobile industry at the moment is that demand for wireless services will continue to expand in the coming years. Therefore, it is vital to find more spectrums through cognitive radios for the growing numbers of services and users. However, the spectrum reallocations, enhanced receivers, shared use, or secondary markets-will not likely, by themselves or in combination, meet the real exponential increases in demand for wireless resources. Network operators will also need to re-examine network architecture, and consider integrating the fibre and wireless networks to address this issue. This thesis involves driving fibre deeper into cognitive networks, deploying microcells connected through fibre infrastructure to the backbone LTE networks, and developing the algorithms for diverting calls between the wireless and fibre systems, introducing new coexistence models, and mobility management. This research addresses the network deployment scenarios to a microcell-aided cognitive network, specifically slicing the spectrum spatially and providing reliable coverage at either tier. The goal of this research is to propose new method of decentralized-to-distributed management techniques that overcomes the spectrum unavailability barrier overhead in ongoing and future deployments of multi-tiered cognitive network architectures. Such adjustments will propose new opportunities in cognitive radio-to-fibre systematic investment strategies. Specific contributions include: 1) Identifying the radio access technologies and radio over fibre solution for cognitive network infrastructure to increase the uplink capacity analysis in two-tier networks. 2) Coexistence of macro and microcells are studied to propose a roadmap for optimising the deployment of cognitive microcells inside LTE macrocells in the case of considering radio over fibre access systems. 3) New method for roaming mobiles moving between microcells and macrocell coverage areas is proposed for managing spectrum handover, operator database, authentication and accounting by introducing the channel assigning agent entity. The ultimate goal is to reduce unnecessary channel adaptations.
34

Cognitive Radio Networks : Elements and Architectures

Popescu, Alexandru January 2014 (has links)
As mobility and computing becomes ever more pervasive in society and business, the non-optimal use of radio resources has created many new challenges for telecommunication operators. Usage patterns of modern wireless handheld devices, such as smartphones and surfboards, have indicated that the signaling traffic generated is many times larger than at a traditional laptop. Furthermore, in spite of approaching theoretical limits by, e.g., the spectral efficiency improvements brought by 4G, this is still not sufficient for many practical applications demanded by end users. Essentially, users located at the edge of a cell cannot achieve the high data throughputs promised by 4G specifications. Worst yet, the Quality of Service bottlenecks in 4G networks are expected to become a major issue over the next years given the rapid growth of mobile devices. The main problems are because of rigid mobile systems architectures with limited possibilities to reconfigure terminals and base stations depending on spectrum availability. Consequently, new solutions must be developed that coexist with legacy infrastructures and more importantly improve upon them to enable flexibility in the modes of operation. To control the intelligence required for such modes of operation, cognitive radio technology is a key concept suggested to be part of the so-called beyond 4th generation mobile networks. The basic idea is to allow unlicensed users access to licensed spectrum, under the condition that the interference perceived by the licensed users is minimal. This can be achieved with the help of devices capable of accurately sensing the spectrum occupancy, learning about temporarily unused frequency bands and able to reconfigure their transmission parameters in such a way that the spectral opportunities can be effectively exploited. Accordingly, this indicates the need for a more flexible and dynamic allocation of the spectrum resources, which requires a new approach to cognitive radio network management. Subsequently, a novel architecture designed at the application layer is suggested to manage communication in cognitive radio networks. The goal is to improve the performance in a cognitive radio network by sensing, learning, optimization and adaptation.
35

Frequency Rendezvous and Physical Layer Network Coding for Distributed Wireless Networks

Pu, Di 22 October 2009 (has links)
"In this thesis, a transmission frequency rendezvous approach for secondary users deployed in decentralized dynamic spectrum access networks is proposed. Frequency rendezvous is a critical step in bootstrapping a wireless network that does not possess centralized control. Current techniques for enabling frequency rendezvous in decentralized dynamic spectrum access networks either require pre-existing infrastructure or use one of several simplifying assumptions regarding the architecture, such as the use of regularly spaced frequency channels for communications. Our proposed approach is designed to be operated in a strictly decentralized wireless networking environment, where no centralized control is present and the spectrum does not possess pre-defined channels. In our proposed rendezvous algorithm, the most important step is pilot tone detection and receiver query. In order to realize a shortest search time for the target receiver, an efficient scanning rule should be employed. In this thesis, three scanning rules are proposed and evaluated, namely: frequency sequence scanning, pilot tone strength scanning, and cluster scanning. To validate our result, we test our scanning rules with actual paging band spectrum measurements. Previous research on security of network coding focuses on the protection of data dissemination procedures and the detection of malicious activities such as pollusion attacks. The capabilities of network coding to detect other attacks has not been fully explored. In this thesis, a new mechanism based on physical layer network coding to detect wormhole attacks is proposed. When two signal sequences collide at the receiver, the difference between the two received sequences is determined by its distances to the senders. Therefore, by comparing the differences between the received sequences at two nodes, we can estimate the distance between them and detect those fake neighbor connections through wormholes. While the basic idea is clear, we design many schemes at both physical and network layers to turn the idea into a practical approach. Simulations using BPSK modulation at the physical layer show that the wireless nodes can effectively detect fake neighbor connections without the adoption of any special hardware on them."
36

Novel channel sensing and access strategies in opportunistic spectrum access networks

Kundargi, Nikhil Ulhas 11 July 2012 (has links)
Traditionally radio spectrum was considered a commodity to be allocated in a fixed and centralized manner, but now the technical community and the regulators approach it as a shared resource that can be flexibly and intelligently shared between competing entities. In this thesis we focus on novel strategies to sense and access the radio spectrum within the framework of Opportunistic Spectrum Access via Cognitive Radio Networks (CRNs). In the first part we develop novel transmit opportunity detection methods that effectively exploit the gray space present in packet based networks. Our methods proactively detect the maximum safe transmit power that does not significantly affect the primary network nodes via an implicit feedback mechanism from the Primary network to the Secondary network. A novel use of packet interarrival duration is developed to robustly perform change detection in the primary network's Quality of Service. The methods are validated on real world IEEE 802.11 WLANs. In the second part we study the inferential use of Goodness-of-Fit tests for spectrum sensing applications. We provide the first comprehensive framework for decision fusion of an ensemble of goodness-of-fit tests through use of p-values. Also, we introduce a generalized Phi-divergence statistic to formulate goodness-of-fit tests that are tunable via a single parameter. We show that under uncertainty in the noise statistics or non-Gaussianity in the noise, the performance of such non-parametric tests is significantly superior to that of conventional spectrum sensing methods. Additionally, we describe a collaborative spatially separated version of the test for robust combining of tests in a distributed spectrum sensing setting. In the third part we develop the sequential energy detection problem for spectrum sensing and formulate a novel Sequential Energy Detector. Through extensive simulations we demonstrate that our doubly hierarchical sequential testing architecture delivers a significant throughput improvement of 2 to 6 times over the fixed sample size test while maintaining equivalent operating characteristics as measured by the Probabilities of Detection and False Alarm. We also demonstrate the throughput gains for a case study of sensing ATSC television signals in IEEE 802.22 systems. / text
37

Enhancing Sensing and Channel Access in Cognitive Radio Networks

Hamza, Doha R. 18 June 2014 (has links)
Cognitive radio technology is a promising technology to solve the wireless spectrum scarcity problem by intelligently allowing secondary, or unlicensed, users access to the primary, licensed, users' frequency bands. Cognitive technology involves two main tasks: 1) sensing the wireless medium to assess the presence of the primary users and 2) designing secondary spectrum access techniques that maximize the secondary users' benefits while maintaining the primary users' privileged status. On the spectrum sensing side, we make two contributions. First, we maximize a utility function representing the secondary throughput while constraining the collision probability with the primary below a certain value. We optimize therein the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order for wideband primary channels. Second, we design a cooperative spectrum sensing technique termed sensing with equal gain combining whereby cognitive radios simultaneously transmit their sensing results to the fusion center over multipath fading reporting channels. The proposed scheme is shown to outperform orthogonal reporting systems in terms of achievable secondary throughput and to be robust against phase and synchronization errors. On the spectrum access side, we make four contributions. First, we design a secondary scheduling scheme with the goal of minimizing the secondary queueing delay under constraints on the average secondary transmit power and the maximum tolerable primary outage probability. Second, we design another secondary scheduling scheme based on the spectrum sensing results and the primary automatic repeat request feedback. The optimal medium access probabilities are obtained via maximizing the secondary throughput subject to constraints that guarantee quality of service parameters for the primary. Third, we propose a three-message superposition coding scheme to maximize the secondary throughput without degrading the primary rate. Cognitive relaying is employed as an incentive for the primary network. The scheme is shown to outperform a number of reference schemes such as best relay selection. Finally, we consider a network of multiple primary and secondary users. We propose a three-stage distributed matching algorithm to pair the network users. The algorithm is shown to perform close to an optimal central controller, albeit at a reduced computational complexity.
38

Security and Privacy in Dynamic Spectrum Access: Challenges and Solutions

January 2017 (has links)
abstract: Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues, which might hinder the practical deployment. This dissertation consists of two parts to discuss the potential challenges and solutions. The first part consists of three chapters, with a focus on secondary-user authentication. Chapter One gives an overview of the challenges and existing solutions in spectrum-misuse detection. Chapter Two presents SpecGuard, the first crowdsourced spectrum-misuse detection framework for DSA systems. In SpecGuard, three novel schemes are proposed for embedding and detecting a spectrum permit at the physical layer. Chapter Three proposes SafeDSA, a novel PHY-based scheme utilizing temporal features for authenticating secondary users. In SafeDSA, the secondary user embeds his spectrum authorization into the cyclic prefix of each physical-layer symbol, which can be detected and authenticated by a verifier. The second part also consists of three chapters, with a focus on crowdsourced spectrum sensing (CSS) with privacy consideration. CSS allows a spectrum sensing provider (SSP) to outsource the spectrum sensing to distributed mobile users. Without strong incentives and location-privacy protection in place, however, mobile users are reluctant to act as crowdsourcing workers for spectrum-sensing tasks. Chapter Four gives an overview of the challenges and existing solutions. Chapter Five presents PriCSS, where the SSP selects participants based on the exponential mechanism such that the participants' sensing cost, associated with their locations, are privacy-preserved. Chapter Six further proposes DPSense, a framework that allows the honest-but-curious SSP to select mobile users for executing spatiotemporal spectrum-sensing tasks without violating the location privacy of mobile users. By collecting perturbed location traces with differential privacy guarantee from participants, the SSP assigns spectrum-sensing tasks to participants with the consideration of both spatial and temporal factors. Through theoretical analysis and simulations, the efficacy and effectiveness of the proposed schemes are validated. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
39

Spectrum sharing for future mobile cellular systems

Bennis, M. (Mehdi) 10 November 2009 (has links)
Abstract Spectrum sharing has become a high priority research area over the past few years. The motivation behind this lies in the fact that the limited spectrum is currently inefficiently utilized. As recognized by the World radio communication conference (WRC)-07, the amount of identified spectrum is not large enough to support large bandwidths for a substantial number of operators. Therefore, it is paramount for future mobile cellular systems to share the frequency spectrum and coexist in a more efficient manner. The present dissertation deals with the problem of spectrum scarcity by examining spectrum sharing paradigms where a migration from fixed to flexible resource allocation is investigated. First, a radio resource management (RRM) architecture is proposed where advanced spectrum functionalities accounting for the short-term variations of the spectrum are examined. The achievable gains are shown in a multi-cell, multi-network environment with realistic traffic patterns from a European operator, enhancing thereby spectrum utilization. Second, inter-operator resource sharing in a broadband network is considered where a packet-based cellular network is developed. It is shown that the obtained gains in terms of quality-of-service (QoS), number of operators and different data rates requirements improve the overall efficiency of the network. Besides and in order to cope with the stringent data rate requirements, direct terminal-to-terminal (T2T) communication is examined in which a realistic algorithm is proposed advocating resource reuse in a cellular system with simultaneous communications between mobiles. Numerical results confirm the advantages of resource reuse in terms of throughput, average frame delays and power consumption. In this thesis, a proposal is made as how to enhance spectrum sharing. The concept of hierarchy is proposed in which wireless competitive operators share the same spectrum band. The decentralized hierarchical approach is shown to bridge the gap between the selfish and centralized approach. Interference avoidance is studied for point-to-point communication in a selforganized network where different optimal power allocation strategies are examined along with the impact of frequency reuse on the ergodic capacity of the network.
40

Efficient spectrum use in cognitive radio networks using dynamic spectrum management

Chiwewe, Tapiwa Moses January 2016 (has links)
Radiofrequency spectrum is a finite resource that consists of the frequencies in the range 3 kHz to 300 GHz. It is used for wireless communication and supports several applications and services. Whether it is at the personal, community or society level, and whether it is for applications in consumer electronics, building management, smart utility networks, intelligent driving systems, the Internet of Things, industrial automation and so on, the demand for wireless communication is increasing continuously. Together with this increase in demand, there is an increase in the quality of service requirements in terms of throughput, and the reliability and availability of wireless services. Industrial wireless sensor networks, for example, operate in environments that are usually harsh and time varying. The frequency spectrum that is utilised by industrial wireless protocols such as WirelessHART and ISA 100.11a, is also used by many other wireless technologies, and with wireless applications growing rapidly, it is possible that multiple heterogeneous wireless systems will need to operate in overlapping spatiotemporal regions in the future. Increased radiofrequency interference affects connectivity and reduces communication link quality. This affects reliability and latency negatively, both of which are core quality service requirements. Getting multiple heterogeneous radio systems to co-exist harmoniously in shared spectrum is challenging. Traditionally, this has been achieved by granting network operators exclusive rights that allow them to access parts of the spectrum assigned to them and hence the problems of co-existence and limited spectrum could be ignored. Design time multi-access techniques have also been used. At present, however, it has become necessary to use spectrum more efficiently, to facilitate the further growth of wireless communication. This can be achieved in a number of ways. Firstly, the policy that governs the regulation of radiofrequency spectrum must be updated to accommodate flexible, dynamic spectrum access. Secondly, new techniques for multiple-access and spectrum sharing should be devised. A revolutionary new communication paradigm is required, and one such paradigm has recently emerged in the form of Cognitive Radio technology. Traditional methods to sharing spectrum assume that radios in a wireless network work together in an unchanging environment. Cognitive radios, on the other hand, can sense, learn and adapt. In cognitive radio networks, the interactions between users are taken into account, in order for adjustments to be made to suit the prevailing radio environment. In this thesis, the problem of spectrum scarcity and coexistence is addressed using cognitive radio techniques, to ensure more efficient use of radio-frequency spectrum. An introduction to cognitive radio networks is given, covering cognitive radio fundamentals, spectrum sensing, dynamic spectrum management, game theoretic approaches to spectrum sharing and security in cognitive radio networks. A focus is placed on wireless industrial networks as a challenging test case for cognitive radio. A study on spectrum management policy is conducted, together with an investigation into the current state of radio-frequency spectrum utilisation, to uncover real and artificial cases of spectrum scarcity. A novel cognitive radio protocol is developed together with an open source test bed for it. Finally, a game theoretic dynamic spectrum access algorithm is developed that can provide scalable, fast convergence spectrum sharing in cognitive radio networks. This work is a humble contribution to the advancement of wireless communication. / Thesis (PhD)--University of Pretoria, 2016. / Centre for Telecommunication Engineering for the Information Society / Electrical, Electronic and Computer Engineering / PhD / Unrestricted

Page generated in 0.0709 seconds