• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Brave New C Band Architecture

Guadiana, Juan M., Uhl, Brecken 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / This paper looks at the migration paradox from a holistic perspective, revisits the Smarter Antenna concept and looks for synergetic solutions. The architecture presented also builds on the momentum of the relentless migration to network technology (that has already transformed telemetry data centers) and pushes it to the vehicle. The results are reduced costs and exciting new functionality, such as better situational awareness for mission conduct and range safety. Spatial and temporal domains are harnessed as aggressively as the frequency domain to enable denser spectral utilization and other exciting benefits. Imagine a Test Range no longer reliant on tracking systems (almost)!
2

Opportunistic Spectrum Utilization by Cognitive Radio Networks: Challenges and Solutions

Amjad, Muhammad Faisal 01 January 2015 (has links)
Cognitive Radio Network (CRN) is an emerging paradigm that makes use of Dynamic Spectrum Access (DSA) to communicate opportunistically, in the un-licensed Industrial, Scientific and Medical bands or frequency bands otherwise licensed to incumbent users such as TV broadcast. Interest in the development of CRNs is because of severe under-utilization of spectrum bands by the incumbent Primary Users (PUs) that have the license to use them coupled with an ever-increasing demand for unlicensed spectrum for a variety of new mobile and wireless applications. The essence of Cognitive Radio (CR) operation is the cooperative and opportunistic utilization of licensed spectrum bands by the Secondary Users (SUs) that collectively form the CRN without causing any interference to PUs' communications. CRN operation is characterized by factors such as network-wide quiet periods for cooperative spectrum sensing, opportunistic/dynamic spectrum access and non-deterministic operation of PUs. These factors can have a devastating impact on the overall throughput and can significantly increase the control overheads. Therefore, to support the same level of QoS as traditional wireless access technologies, very closer interaction is required between layers of the protocol stack. Opportunistic spectrum utilization without causing interference to the PUs is only possible if the SUs periodically sense the spectrum for the presence of PUs' signal. To minimize the effects of hardware capabilities, terrain features and PUs' transmission ranges, DSA is undertaken in a collaborative manner where SUs periodically carry out spectrum sensing in their respective geographical locations. Collaborative spectrum sensing has numerous security loopholes and can be favorable to malicious nodes in the network that may exploit vulnerabilities associated with DSA such as launching a spectrum sensing data falsification (SSDF) attack. Some CRN standards such as the IEEE 802.22 wireless regional area network employ a two-stage quiet period mechanism based on a mandatory Fast Sensing and an optional Fine Sensing stage for DSA. This arrangement is meant to strike a balance between the conflicting goals of proper protection of incumbent PUs' signals and optimum QoS for SUs so that only as much time is spent for spectrum sensing as needed. Malicious nodes in the CRN however, can take advantage of the two-stage spectrum sensing mechanism to launch smart denial of service (DoS) jamming attacks on CRNs during the fast sensing stage. Coexistence protocols enable collocated CRNs to contend for and share the available spectrum. However, most coexistence protocols do not take into consideration the fact that channels of the available spectrum can be heterogeneous in the sense that they can vary in their characteristics and quality such as SNR or bandwidth. Without any mechanism to enforce fairness in accessing varying quality channels, ensuring coexistence with minimal contention and efficient spectrum utilization for CRNs is likely to become a very difficult task. The cooperative and opportunistic nature of communication has many challenges associated with CRNs' operation. In view of the challenges described above, this dissertation presents solutions including cross-layer approaches, reputation system, optimization and game theoretic approaches to handle (1) degradation in TCP's throughput resulting from packet losses and disruptions in spectrum availability due non-deterministic use of spectrum by the PUs (2) presence of malicious SUs in the CRN that may launch various attacks on CRNs' including SSDF and jamming and (3) sharing of heterogeneous spectrum resources among collocated CRNs without a centralized mechanism to enforce cooperation among otherwise non-cooperative CRNs
3

Co-primary multi-operator resource sharing for small cell networks

Luoto, P. (Petri) 06 March 2017 (has links)
Abstract The aim of this thesis is to devise novel co-primary spectrum sharing (CoPSS) methods for future fifth generation (5G) networks and beyond. The target is to improve data rates of small cell networks (SCNs) in which mobile network operators (MNOs) share their dedicated frequency spectrum (spectrum pooling) or a common spectrum (mutual renting). The performance of the proposed methods is assessed through extensive system-level simulations. MNOs typically acquire exclusive usage rights for certain frequency bands and have little incentive to share spectrums with other operators. However, due to higher cost and spectrum scarcity at lower frequencies it is expected that efficient use of the spectrum in 5G networks will rely more on spectrum sharing than exclusive licenses. This is especially true for new higher candidate frequencies (> 6 GHz) that do not have a pre-existing spectrum regulation framework. In the first part of the thesis, we tackle the challenge of providing higher data rates within limited spectral resources. Each SCN MNO has its own dedicated spectrum, and each MNO defines a percentage of how much its spectrum it is willing to share. The idea of the proposed CoPSS algorithms is that the spectrum is dynamically shared among MNOs based on their spectrum utilization, which is shared among MNOs in the network. This way interference can be avoided and spectrum utilization is maximized. Unused resources are shared equally between overloaded MNOs for a given time instant. Thus, only short-term fairness among overloaded SCNs can be guaranteed. In the second part, we consider a multi-operator small cell network where MNOs share a common pool of radio resources. The goal is to ensure the long term fairness of spectrum sharing without coordination among small cell base stations. We develop a decentralized control mechanism for base stations using the Gibbs sampling based learning tool, which allocates suitable amount of the spectrum for each base station while avoiding interference from SCNs and maximizing the total network throughput. In the studied scenarios, we show the importance of coordination among MNOs when the dedicated spectrum is shared. However, when MNOs share a common spectrum, a decentralized control mechanism can be used to allocate suitable amounts of spectrum for each base station. The proposed algorithms are shown to be effective for different network layouts, by achieving significant data rate enhancements with a low overhead. / Tiivistelmä Tämä väitöskirja keskittyy kehittämään uusia menetelmiä, joilla jaetaan taajuuksia useiden operaattoreiden kesken tulevista viidennen sukupolven verkoista alkaen. Päätavoite on parantaa tiedonsiirtonopeuksia sellaisissa piensoluverkoissa, joissa matkapuhelinoperaattorit jakavat joko heidän omia taajuusalueitaan tai heillä yhteisomistuksessa olevia taajuuksia. Kehitettyjen menetelmien suorituskykyä arvioidaan mittavien järjestelmätason simulointien avulla. Matkapuhelinoperaattorit tyypillisesti omistavat yksin tietyt taajuusalueet, eivätkä ole valmiita jakamaan niitä. On kuitenkin oletettu, että tulevaisuudessa matkapuhelinoperaattorit joutuvat jakamaan taajuuksia, koska taajuusalueet ovat kalliita ja niukkoja erityisesti matalilla taajuusalueilla. Korkeammat taajuusalueet (> 6 GHz) puolestaan muodostavat otollisen alustan tehokkaalle spektrin jaetulle käytölle, koska niillä ei ole vielä olemassa olevaa taajuussääntelyä. Väitöskirjan ensimmäisessä osassa keskitytään kasvattamaan tiedonsiirtonopeuksia kun jokainen matkapuhelinoperaattori omistaa oman taajuuskaistansa ja matkapuhelinoperaattorit määrittävät kuinka suuren prosentuaalisen osuuden ovat valmiita jakamaan. Esitettyjen algoritmien päätavoite on jakaa taajuuksia dynaamisesti matkapuhelinoperaattoreiden kesken. Algoritmeissa hyödynnetään tietoa matkapuhelinoperaattoreiden taajuuden käyttöasteesta, jonka matkapuhelinoperaattoritkommunikoivat toisilleen. Näin häiriö voidaan välttää ja taajuuden käyttö maksimoidaan. Käyttämättömät taajuudet jaetaan tasaisesti matkapuhelinoperaattorien kesken tietyllä ajanhetkellä. Näin voidaan taata lyhytaikainen oikeudenmukainen taajuuksien käyttö, mutta ei pitkäaikaista oikeudenmukaista taajuuksien käyttöä. Väitöskirjan toisessa osassa matkapuhelinoperaattorit jakavat yhteisomistuksessa olevia taajuuksia. Tavoitteena on saavuttaa pitkäaikainen taajuuksien oikeudenmukainen käyttö, kun piensoluverkot eivät kommunikoi keskenään. Työssä kehitetään piensoluverkoille hajautettu algoritmi, joka perustuu oppimistyökaluun Gibbs-näytteistys. Näin saadaan allokoitua jokaiselle tukiasemalle tarvittava määrä taajuusresursseja niin, että häiriö tukiasemien välillä minimoidaan ja koko piensoluverkon suorituskyky maksimoidaan. Tutkituissa skenaarioissa osoitetaan matkapuhelinoperaattoreiden välisen koordinaation tärkeys, kun jaetaan omia taajuusalueita. Toisaalta kun operaattorit jakavat yhteisomistuksessa olevia taajuuksia on mahdollista käyttää algoritmeja, joissa ei ole koordinaatiota matkapuhelinoperaattoreiden kesken. Väitöskirjassa vahvistetaan kehitettyjen algoritmien olevan tehokkaita ja sopivan monenlaisiin verkkoympäristöihin saavuttaen merkittäviä parannuksia tiedonsiirtonopeuteen ilman suuria kustannuksia.
4

Location Awareness in Cognitive Radio Networks

Celebi, Hasari 24 June 2008 (has links)
Cognitive radio is a recent novel approach for the realization of intelligent and sophisticated wireless systems. Although the research and development on cognitive radio is still in the stage of infancy, there are significant interests and efforts towards realization of cognitive radio. Cognitive radio systems are envisioned to support context awareness and related systems. The context can be spectrum, environment, location, waveform, power and other radio resources. Significant amount of the studies related to cognitive radio in the literature focuses on the spectrum awareness since it is one of the most crucial features of cognitive radio systems. However, the rest of the features of cognitive radio such as location and environment awareness have not been investigated thoroughly. For instance, location aware systems are widespread and the demand for more advanced ones are growing. Therefore, the main objective of this dissertation is to develop an underlying location awareness architecture for cognitive radio systems, which is described as location awareness engine, in order to support goal driven and autonomous location aware systems. A cognitive radio conceptual model with location awareness engine and cycle is developed by inspiring from the location awareness features of human being and bat echolocation systems. Additionally, the functionalities of the engine are identified and presented. Upon providing the functionalities of location awareness engine, the focus is given to the development of cognitive positioning systems. Furthermore, range accuracy adaptation, which is a cognitive behavior of bats, is developed for cognitive positioning systems. In what follows, two main approaches are investigated in order to improve the performance of range accuracy adaptation method. The first approach is based on idea of improving the spectrum availability through hybrid underlay and overlay dynamic spectrum access method. On the other hand, the second approach emphasizes on spectrum utilization, where we study performance of range accuracy adaptation from both theoretical and practical perspectives considering whole spectrum utilization approach. Furthermore, we introduced a new spectrum utilization technique that is referred as dispersed spectrum utilization. The performance analysis of dispersed spectrum utilization approach is studied considering time delay estimation problem in cognitive positioning systems. Afterward, the performance of whole and dispersed spectrum utilization approaches are compared in the context of cognitive positioning systems. Finally, some representative advanced location aware systems for cognitive radio networks are presented in order to demonstrate some potential applications of the proposed location awareness engine in cognitive radio systems.
5

Spectrum sensing based on specialized microcontroller based white space sensors : Measuring spectrum occupancy using a distributed sensor grid

Tormo Peiró, Julia Alba January 2013 (has links)
The continuing increase in the adoption and use of wireless technology aggravates the problem of spectrum scarcity due to the way we utilize the spectrum. The radio spectrum is a limited resource regulated by governmental agencies according to a fixed spectrum assignment policy. However, many studies show that this fixed radio frequency allocation leads to significant underutilization of the radio spectrum creating artificial scarcity, as most of the allocated spectrum is not used all of the time in every location. To meet services growing demands, efficient use of the spectrum is essential. Therefore, there is a need to estimate the radio spectrum utilization in several locations and during different periods of time in order to opportunistically exploit the existing wireless spectrum. Cognitive radio technology aims to search for those portions of the radio spectrum that are assigned to a specific service, but are unused during a specific time and at specific location in order to share these white spaces and thus to reduce the radio spectrum inefficiency. In this thesis, we study spectrum utilization in the frequency range from 790MHz to 925MHz. The spectrum sensing has been realized using a number of specialized microcontroller based white space sensors which utilize energy detection, situated in different locations of a building in Kista, Sweden. The occupancy of the frequency bands in this chunk of the spectrum is quantified as the fraction of samples with a power level greater than a threshold. The results from these spectrum measurements show that a significant amount of spectrum in this scanned range around the building is inefficiently used all the time. / Den senaste tidens ökning av trådlös teknik förvärrar problemet med spektrumbrist på grund av hur vi använder den. Det radiospektrum är en begränsad resurs som regleras av statliga myndigheter enligt en fast spektrumtilldelningen politik. Men många studier visar att den fasta frekvensplan leder till betydande underutnyttjande av radiospektrum och skapar en konstgjord brist eftersom de flesta av de tilldelade spektrumet inte används hela tiden i varje platsen. För att uppfylla tjänster ökade krav, är viktigt en effektiv användning av spektrumet. Därför finns det ett behov av att uppskatta användningen av radiospektrum i flera platser och i olika tidsperioder för att kunna utnyttja den befintliga trådlösa spektrumet i opportunistiskt sätt. Kognitiv radio teknologi syftar till att söka efter dessa delar av radiospektrum som tilldelas till en konkret tjänst och är oanvända i en viss tid och på viss plats för att dela dessa vita ytor och därför lösa radio spektrum ineffektivitet problem. I denna uppsats studerar vi spektrumanvändning i frekvensområdet från 790 MHz till 925 MHz. Spektrat avkänning har utförts med hjälp av ett antal specialiserade mikrokontroller blanktecken sensorer vilka utnyttjar energin upptäckt, som ligger på olika platser i en byggnad i Kista, Sverige. Uthyrningsgraden av frekvensbanden i denna del av spektrumet kvantifieras som antalet prover med en effektnivå överstiger en tröskel. Resultaten från spektrat mätningarna visar att en betydande del av spektrumet i denna scannade intervall ineffektivt används hela tiden.

Page generated in 0.1034 seconds