• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 22
  • 15
  • 9
  • 4
  • 2
  • 1
  • Tagged with
  • 192
  • 192
  • 102
  • 44
  • 43
  • 42
  • 42
  • 32
  • 30
  • 30
  • 28
  • 27
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Spectroscopie électronique et couplage spin-orbite de composés organométalliques / Electronic spectroscopy and spin-orbit coupling of organometallic compounds

Brahim, Houari 17 June 2013 (has links)
Les travaux théoriques réalisés dans le cadre de la thèse nous ont permis d’étudier en détail, sur la base de méthodes DFT, TD-DFT et ab initio les propriétés structurales, électroniques et spectroscopiques de deux classes de molécules, les composés carbonyles hydrures des métaux de transition de la 1re et 3me rangée (Mn, Re) et les complexes cyclométalants phenyl pyridine de l’iridium. L’accent a été mis plus particulièrement sur les effets de couplage spin-orbite sur les spectres d’absorption électronique de ces molécules. La quantification de ces effets a permis de montrer que seuls les spectres électroniques des complexes possédant un centre métallique de la 3me rangée des métaux de transition (Re, Ir) étaient modifiés par la correction spin-orbite en perturbation. Le caractère des états, MC ou MLCT, la proximité des états singulets et triplets sont les facteurs qui influencent fortement l’interaction spinorbite entre états excités. Un effet remarquable observé pour le complexe du rhenium est le décalage important du spectre d’absorption vers le rouge du à l’éclatement de l’état triplet le plus bas. Dans ce cas l’effet de couplage spinorbite doit être pris en compte pour obtenir un spectre plus proche de l’expérience. Un effet spin-orbite déjà observé sur d’autres systèmes est l’augmentation de de la densité d’états par éclatement des états triplets et la diminuation des force d’oscillateur qui se répartissent sur ces états pour aboutir à des spectres d’absorption électronique plus étendus et moins intenses. L’étude menée sur les complexes d’iridium pour lesquels les spectres expérimentaux sont particulièrement mal résolus, montre un accord remarquable entre ceux-ci est les spectres d’absorption théoriques TD-DFT. Cependant les effets de fonctionnelle peuvent jouer un rôle important sur la qualité des spectres. Pour ces molécules les calculs ab initio n’ont pu aboutir au-delà du niveau CASSCF. Les états excités sont très délocalisés dans ces molécules et il est difficile de décrire au même niveau d’approximation les différents types d’états MLCT, LLCT, MC, LMCT... Dans la plupart des cas les fonctionnelles B3LYP et PW91 donnent des résultats satisfaisants pour les complexes d’iridium. Les éclatements spin-orbite des états électroniques triplets peuvent être supérieurs à 1500 cm-1 dans les complexes possédant un centre métallique de la 3me rangée des métaux de transition. / The theoretical work of the thesis have allowed us to study in detail, on the basis of DFT methods, TD-DFT and ab initio structural, electronic and spectroscopic properties of two classes of molecules, carbonyl compounds, hydrides transition metals of the 1st and 3rd row (Mn, Re) and complex cyclométalants phenyl pyridine iridium. The focus was specifically on the effects of spin-orbit coupling on the electronic absorption spectra of these molecules. The quantification of these effects showed that only electronic spectra of the complexes with a metal center of the 3rd row transition metals (Re, Ir) were modified by correcting spin-orbit perturbation. The character states, MC or MLCT, the proximity of singlet and triplet states are the factors that strongly influence the spin-orbit interaction between excited states. A remarkable effect observed for the rhenium complex is the large shift of the absorption spectrum to the red of the bursting of the lowest triplet state. In this case the effect of spin-orbit coupling must be taken into account to get closer to the experience spectrum. A spin-orbit effects already observed on other systems is to increase the density of states per burst and triplet states as decreasing the oscillator strength which fall on these statements lead to absorption spectra electronic broader and less intense. The study of the iridium complexes for which experimental spectra are particularly poorly resolved, shows a remarkable agreement between them is the theoretical absorption spectra of TDDFT. However, the functional effects can play an important role in the quality of the spectra. For these molecules ab initio calculations do not reach beyond the CASSCF level. The excited states are delocalized in these molecules and it is difficult to describe the same level of approximation the different types of states MLCT, LLCT, MC, LMCT ... In mostcases the functional B3LYP and PW91 give satisfactory results for the iridium complexes. The spin-orbit explosions electronic triplet states may be higher than 1500 cm-1 in complex with metal center 3rd row transition metals.
102

Pump-probe spectroscopy of vibronic dynamics using high-order harmonic generation : general theory and applications to SO2 / Spectroscopie pompe-sonde de la dynamique vibronique en utilisant la génération d’harmoniques d’ordre élevé : théorie générale et applications à SO2

Lévêque, Camille 31 October 2014 (has links)
La molécule SO2 est connue depuis longtemps dans la pour son spectre d'absorption compliqué résultant de forts couplages entre les états électroniques impliqués. Cette longue histoire a récemment été complétée par de nouvelles études spectroscopiques résolues en temps; la spectroscopie de photoémission (TRPES) et la génération d'harmoniques d'ordre élevé. De nouvelles questions ont ainsi émergées, concernant le rôle des différents états électroniques excités, les différents couplages et leur temps caractéristiques. Pour répondre à ces questions, nous avons considéré, dans un premier temps, l'état électronique fondamental et les deux premiers états singulets excités. Ceux-ci interagissent par l'intermédiaire de couplage non-adiabatic, conduisant à la complexité du spectre d'absorption. Nos résultats se sont avérés particulièrement précis, en particulier pour la description des bandes de Cléments, donnant lieu à leur première description et interprétation théorique. Le couplage spin-orbite et les états triplets ont été introduits dans la description du système et l'analyse de la dynamique a permis de comprendre les différents mécanismes de conversion intersystème. Trois résultats majeurs sont obtenus, (i) le rôle prédominant d'un état 3B2, (ii) la présence d'interférences quantiques lors du processus et (iii) une nouvelle interprétation de la bande dite " interdite ", émanant des état triplets. Les spectroscopies TRPES et HHG ont été utilisées pour sonder la dynamique moléculaire dans ces états. Grâce à des simulations ab-initio nous montrons que la méthode TRPES permet l'étude la dynamique pour tous les états alors que la HHG n'est sensible qu'à la conversion intersystème. / The SO2 molecule is long known in the literature for its complex UV absorption spectrum, which is caused by a variety of strong couplings between the electronic states involved. This long and rich history was augmented recently by new time-dependent spectroscopic methods, namely, Time-Resolved Photoelectron Spectroscopy (TRPES) and High-order Harmonic Generation (HHG). Additional open questions emerged immediately, e.g., what was the role of the different known electronic states, which were the relevant couplings and also the timescales of the different relevant processes.To resolve these issues theoretically, we start by considering the electronic ground state and the two lowest singlet excited states. The latter interact through non-adiabatic couplings leading to a complex photoabsorption spectrum. Our results were accurate, especially concerning the Clements bands, and provide a comprehensive description of the photoabsorption spectrum. When including the spin-orbit coupling, relevant for the weak long-wavelength absorption system, the three-states model turns into a 12 coupled-states system. Analysis of the different couplings gives insight into the different mechanisms of the intersystem crossing. Three main points are shown: (i) the preponderant role of a 3B2 state, (ii) the possibility of quantum interferences during the process and (iii) a new interpretation of the forbidden band.The TRPES and the HHG spectroscopies have been used to probe the time-dependent dynamics in all these states. With the aid of first-principles simulations we show that the TRPES method is sensitive to the dynamics in the manifold, while HHG is sensitive only to the intersystem crossing.
103

Hétérostructures épitaxiées avec des propriétés dépendantes de spin et de charges pour des applications en spintronique / Spin orbitronics using alloy materials with tailored spin and charge dependent properties

Gellé, Florian 27 November 2019 (has links)
L’objectif de la thèse est de développer un système de type jonction tunnel tout oxyde à base de La2/3Sr1/3MnO3 (LSMO) où il serait possible de contrôler l’aimantation des électrodes magnétiques par des processus à faible consommation d’énergie. Des jonctions tunnel épitaxiées de LSMO/SrTiO3/LSMO ont été obtenues montrant un double renversement de l’aimantation à température ambiante et un taux de magnétorésistance de 71 % à 10 K. En exerçant une contrainte sur le LSMO par le substrat il a été possible de moduler l’anisotropie des couches magnétiques. Des anisotropies perpendiculaire ou dans le plan ont pu être obtenues. Afin de contrôler le renversement des moments magnétiques dans une des électrodes ferromagnétiques trois options ont été envisagées : l’utilisation de l’injection de spin à partir d’un métal à fort couplage spin-orbite (Pt, Ir) ou d’un oxyde contenant de tels ions (ici Ru dans SrRuO3), et l’utilisation du Bi2FeCrO6, un oxyde multiféroïque pouvant présenter un couplage magnétoélectrique. Malgré des résultats prometteurs, aucune solution n’a permis des tests sur des jonctions afin d’estimer leur efficacité. L’objectif final n’est pas encore atteint mais des avancées intéressantes ont été faites afin d’envisager des dispositifs permettant le stockage et la manipulation de l’information. / The objective of this work is to develop La2/3Sr1/3MnO3 (LSMO) based all-oxide magnetic tunnel junction systems where it would be possible to control the magnetization of magnetic electrodes by low energy consumption processes. Epitaxial tunnel junctions of LSMO/SrTiO3/LSMO were obtained showing a double magnetization switching at room temperature and a magnetoresistance ratio of 71 % at 10 K. Using strain engineering, it was possible to modulate the anisotropy of the LSMO magnetic layers. Perpendicular or in plane anisotropies could be thus obtained. In order to control the reversal of the magnetic moments in one of the ferromagnetic electrodes three options were considered : the use of spin injection from a metal with a strong spin-orbit coupling (Pt, Ir) or an oxide containing this type of ions (here Ru in SrRuO3), and the use of Bi2FeCrO6 multiferroic oxide that may exhibit a magnetoelectric coupling. Despite promising results, no solution has allowed tests on junctions to be carried out to estimate their effectiveness. Although the final objective is not yet achieved, interesting progress has been made on the way to information storage and manipulation devices.
104

Theoretical Investigations of Skyrmions in Chiral Magnets

Rowland, James R., IV January 2019 (has links)
No description available.
105

Electronic Transport Properties of Novel Two-Dimensional Materials: Chromium Iodide and Indium Selenide

Shcherbakov, Dmitry Leonidovich January 2021 (has links)
No description available.
106

Implementation of Spin-Orbit Coupling in Semi-Empirical Quantum Chemical Methods and Applications on Excitonic Properties of Twisted van der Waals 2D Materials

Jha, Gautam 28 February 2024 (has links)
Spin-orbit coupling (SOC) is a relativistic effect whose origin lies in the Dirac’s equation – a relativistic analogue of Schrödinger’s equation. SOC corrects the electronic states of a quantum mechanical system up to ~1 eV in case of semiconductors and ~ 2 – 3.6 eV in case of actinides and heavy elements by considering not only the coordinates but also the spin of the electrons in the system. Most of the applications of the present day technology are based on manipulating the electronic structure of a system with very high accuracy and precision. This demands availability of correct electronic structure of a material or molecule within a feasible computational time. Some direct consequences of SOC in materials can be noticed in analyzing the charge-transport properties of a semiconductor, evaluating the candidature of transition metal dichalcogenides (TMDCs) for spintronic, twistronic and valleytronic applications, and in the origin of topological properties of a material. Not only in materials but also in molecules the SOC effects can be observed. Fine-structure of atomic spectra was explained on the account of SOC. Several additional peaks and wavelength shift in UV-vis spectroscopy of Gold Superatoms can only be explained by correctly considering the energy level splittings caused by SOC. SOC allows intersystem and reverse intersystem crossing by mixing the spin states, ultimately opening various chemical reaction pathways which were spin forbidden before. Current advancements in computational power enrich us to work shoulder to shoulder with experiments where one can simulate the synthesized structures containing thousands of atoms using semi-empirical methods as in DFTB, GFN-XTB. These methods so far considered SOC effects but only as case studies in testing the implementation of SOC Hamiltonian rather than a systemic extension of SOC parameters to most part of the periodic table and studying SOC effects for different categories of materials and molecules. This motivated us to implement the SOC either in the form of highly accurate parameters throughout the periodic table or as addition in hamiltonian in such methods. Twisted van der Waals 2D materials as in twisted TMDC bilayers shows exciting electronic and optoelectronic properties and depending on the twist angle and chemical composition they can have thousands of atoms in their superlattices. A correct electronic analysis of such structures with SOC corrected DFT is computationally very expensive but is feasible at semi-empirical level. Here, we have applied our implementation on TMDC homo and heterobilayer twisted superlattices and studied the effect of SOC on the excitonic properties of the system. Therefore, this work opens the way for realizing various exotic applications of present day materials as well as molecules.:Table of Contents Abstract 4 1 Introduction 8 1.1 Quantum Chemistry: 8 1.2 HF based Semi-Empirical Methods 9 1.3 DFT based Semi-Empirical Methods 11 1.3.1 Density Functional based Tight-Binding Method (DFTB) 11 1.3.2 Geometry, Frequency, Non-Covalent, extended Tight Binding (GFN-xTB) 12 1.4 Spin-Orbit Coupling (SOC) 14 1.4.1 SOC in Materials 18 1.4.2 SOC in Molecular Structures 22 1.5 Theoretical Models for Accounting SOC 24 1.6 Motivation, Objective and Outline of thesis 26 2 Methodology 29 2.1 Quantum Chemistry 30 2.1.1 Schrödinger equation 30 2.2 Density Functional Theory 33 2.2.1 Generalized Gradient Approximations 39 2.3 Spin-orbit Coupling (SOC) 41 2.3.1 Classical Picture of SOC in LS model 42 2.3.2 Quantum Picture of SOC in LS model: 43 2.3.3 Calculation of SOC Paramentes 45 2.4 Density Functional Based Semi-empirical Quantum Mechanical Methods 48 2.4.1 Self-Consistent Charge Density Functional Based Tight Binding Method (SCC-DFTB) 48 2.4.2 Extended Tight-Binding (GFN1-xTB) 51 2.4.3 Addition of Spin-Orbit Coupling Hamiltonian in DFTB and GFN-xTB 54 3 Benchmarking Spin-Orbit Coupling Parameters for DFTB 56 3.1 Introduction 58 3.2 Computational Details of the DFT benchmark calculations 60 3.3 Benchmarking Spin-Orbit Coupling Parameters 60 3.3.1 III-V Bulk Semiconductor 61 3.3.2 Transition Metal Dichalcogenide 2D Crystals 65 3.3.3 Topological Insulators 68 3.4 Conclusions 70 4 Spin-Orbit Coupling Corrections for the GFN-xTB method 71 4.1.1 Introduction 73 4.2 Computational Details of The Benchmark Calculations 75 4.3 Results & Discussion 76 4.3.1 Geometries 76 4.3.2 Effect of SOC on Charge Transport Properties of Chromophores in MOFs 77 4.3.3 Superatoms 82 4.3.4 Effect of SOC on Binding of O2 on Ferrous Deoxyheme 85 4.4 Conclusions 86 5 Spin Orbit Coupling Effects on The Excitonic Properties of Twisted Moiré Transition Metal Dichalcogenides 88 5.1 Introduction 90 5.2 Computational Details 92 5.3 Results & Discussions 93 5.4 Excitons in Twisted Moiré Homobilayers 93 5.5 Excitons in Twisted Moiré Heterobilayers 102 5.6 Conclusions 109 6 Summary 112 A. Acronym 116 B. Appendices 120 SOC Parameters 120 7 References 147 C. Acknowledgement 173
107

Ballistic Magnetotransport and Spin-Orbit Interaction InSb and InAs Quantum Wells

Peters, John Archibald 11 September 2006 (has links)
No description available.
108

Optical Control and Spectroscopic Studies of Collisional Population Transfer in Molecular Electronic States

Pan, Xinhua January 2017 (has links)
The quantum interference effects, such as the Autler-Townes (AT) effect and electromagnetically induced transparency (EIT) applied to molecular systems are the focus of this Dissertation in the context of high resolution molecular spectroscopy. We demonstrate that the AT effect can be used to manipulate the spin character of a spin-orbit coupled pair of molecular energy levels serving as a \textit{gateway} between the singlet and triplet electronic states. We demonstrate that the singlet-triplet mixing characters of the \textit{gateway} levels can be controlled by manipulating the coupling laser \textit{E} field amplitude. We observe experimentally the collisional population transfer between electronic states $G^1\Pi_g (v=12, J=21, f)$ and $1^3\Sigma _g^-(v=1, N=21, f)$ of $^7$Li$_2$. We obtain the Stern-Vollmer plot according to the vapor pressure dependence of collisional transfer rate. The triplet fluorescence from the mixed \textit{gateway} levels to the triplet $b^3\Pi_u(v'=1,J'= / Physics
109

Etude ab initio des effets de corrélation et des effets relativistes dans les halogénures diatomiques de métaux de transition/ Ab initio study of the correlation and relativistic effects in diatomic halides containing a transition metal.

Rinskopf, Nathalie D. D. 07 September 2007 (has links)
Ce travail est une contribution ab initio à la caractérisation d'halogénures diatomiques de métaux de transition. Nous avons choisi de caractériser la structure électronique des chlorures de métaux de transition du groupe Vb (NbCl et TaCl) et du fluorure de nickel car une série de spectres les concernant ont été enregistrés mais aucune donnée théorique fiable n'était disponible dans la littérature. Pour étudier ces molécules, nous avons appliqué une procédure de calcul à deux étapes qui permet de tenir compte des effets de corrélation électronique et des effets relativistes. Dans la première étape, nous avons réalisé des calculs CASSCF/ICMRCI+Q de grande taille qui tiennent compte de l'énergie de corrélation et introduisent des effets relativistes scalaires. Dans la deuxième étape, le couplage spin-orbite est traité par la "state interacting method" implémentée dans le logiciel MOLPRO. Nous avons développé des stratégies de calcul basées sur ces méthodes de calcul et adaptées aux différentes molécules ciblées. Ainsi, pour les molécules NbCl et TaCl, nous avons utilisé des pseudopotentiels relativistes scalaires et spin-orbite, tandis que pour la molécule NiF, nous avons réalisé des calculs tous électrons. Nous avons d'abord testé la stratégie de calcul sur les cations Nb+ et Ta+. Ensuite, nous avons calculé pour la première fois les structures électroniques relativiste scalaire et spin-orbite des molécules NbCl (de 0 à 17000 cm-1) et TaCl (de 0 à 23000 cm-1). A l'aide de ces données théoriques, nous avons interprété les spectres expérimentaux en collaboration avec Bernath et al. Nous avons proposé plusieurs attributions de transitions électroniques en accord avec l'expérience mais nos résultats théoriques ne nous ont pas permis de les attribuer toutes. Néanmoins, nous avons mis en évidence une série d'autres transitions électroniques probables qui pourraient, à l'avenir, servir à l'interprétation de nouveaux spectres mieux résolus. Outre son intérêt expérimental, cette étude a permis de comparer les structures électroniques des molécules isovalencielles VCl, NbCl et TaCl, mettant en évidence des différences importantes. L'élaboration d'une nouvelle stratégie de calcul pour décrire les systèmes contenant l'atome de nickel représentait un véritable défi en raison de la complexité des effets de corrélation électronique. Notre stratégie de calcul a consisté à introduire ces effets en veillant à réduire au maximum la taille des calculs qui devenait considérable. Nous l'avons testée sur l'atome Ni et appliquée ensuite au calcul des structures électroniques relativiste scalaire et spin-orbite de la molécule NiF entre 0 à 2500 cm-1. Nous avons obtenus des résultats qui corroborent l'expérience.
110

Spin Polarized Transport in Nanoscale Devices

Pramanik, Sandipan 01 January 2006 (has links)
The ultimate goal in the rapidly burgeoning field of spintronics is to realize semiconductor-based devices that utilize the spin degree of freedom of a single charge carrier (electron or hole) or an ensemble of such carriers to achieve novel and/or enhanced device functionalities such as spin based light emitting devices, spin transistors and femto-Tesla magnetic field sensors. These devices share a common feature: they all rely on controlled transport of spins in semiconductors. A prototypical spintronic device has a transistor-like configuration in which a semiconducting channel is sandwiched between two contacts (source and drain) with a gate electrode sitting on top of the channel. Unlike conventional charge-based transistors, the source electrode of a spin transistor is a ferromagnetic (or half-metallic) material which injects spin polarized electrons in the channel. During transit, the spin polarizations of the electrons are controllably rotated by a gate electric field mediated spin-orbit coupling effect. The drain contact is ferromagnetic (or half-metallic) as well and the transmission probability of an electron through this drain electrode depends on the relative orientation of electron spin polarization and the (fixed) magnetization of the drain. When the spins of the electrons are parallel to the drain magnetization, they are transmitted by the drain resulting in a large device current (ON state of spin FET). However, these electrons will be completely blocked if their spins are antiparallel to the drain magnetization, and ideally, in this situation device current will be zero (OFF state of spinFET). Thus, if we vary the gate voltage, we can modulate the channel current by controlling the spin orientations of the electrons with respect to the drain magnetization. This is how transistor action is realized (Datta-Das model). However, during transport, electrons' velocities change randomly with time due to scattering and hence different electrons experience different spin-orbit magnetic fields. As a result, even though all electrons start their journey with identical spin orientations, soon after injection spins of different electrons point along different directions in space. This randomization of initial spin polarization is referred to as spin relaxation and this is detrimental to the spintronic devices. In particular, for Datta-Das transistor, this will lead to inefficient gate control and large leakage current in the OFF state of the spinFET. The aim of this work is to understand various spin relaxation processes that are operative in semiconductor nanostructures and to indicate possible ways of minimizing them. The theoretical aspect of this work (Chapters 2-5) focuses on the D'yakonov-Perel' process of spin relaxation in a semiconductor quantum wire. This process of spin relaxation occurs because during transport electron spin precesses like a spinning top about the spin-orbit magnetic field. We show that the conventional drift-diffusion model of spin transport, which has been used extensively in literature, completely breaks down in case of a quantum confined system (e.g. a quantum wire). Our approach employs a semi-classical model which couples the spin density matrix evolution with the Boltzmann transport equation. Using this model we have thoroughly studied spin relaxation in a semiconductor quantum wire and identified several inconsistencies of the drift-diffusion formalism.The experimental side of this work (Chapters 6-8) deals with two different issues: (a) performing spin transport experiments in order to extract spin relaxation length and time in various materials (e.g. Cu, Alq3) under one-dimensional confinement, and (b) measurement of the ensemble spin dephasing time in self-assembled cadmium sulfide quantum dots using electron spin resonance technique. The spin transport experiment, as described in Chapter 7 of this dissertation, shows that the spin relaxation time in organic semiconductor (Alq3) is extremely long, approaching a few seconds at low temperatures. Alq3 is the chemical formula of tris- 8 hydroxy-quinoline aluminum, which is a small molecular weight organic semiconductor. This material is extensively used in organic display industry as the electron transport and emission layer in green organic light emitting diodes. The long spin relaxation time in Alq3 makes it an ideal platform for spintronics. This also indicates that it may be possible to realize spin based organic light emitting diodes which will have much higher internal quantum efficiency than their conventional non-spin counterparts. From spin transport experiments mentioned above we have also identified Elliott-Yafet mode as the dominant spin relaxation mechanism operative in organic semiconductors. Electron spin resonance experiment performed on self-assembled quantum dots (Chapter 8) allows us to determine the ensemble spin dephasing time (or transverse spin relaxation time) of electrons confined in these systems. In quantum dots electrons are strongly localized in space. Surprisingly, the ensemble spin dephasing time shows an increasing trend as we increase temperature. The most likely explanation for this phenomenon is that spin dephasing in quantum dots (unlike quantum wells and wires) is dominated by nuclear hyperfine interaction, which weakens progressively with temperature. We hope that our work, which elaborates on all of the above mentioned topics in great detail, will be a significant contribution towards the current state of knowledge of subtle spin-based issues operative in nanoscale device structures, and will ultimately lead to realization of novel nano-spintronic devices.

Page generated in 0.0431 seconds