Spelling suggestions: "subject:"splineverfahren"" "subject:"samplingverfahren""
1 |
Effektive Beobachtung von zufälligen Funktionen unter besonderer Berücksichtigung von AbleitungenHoltmann, Markus 10 December 2009 (has links) (PDF)
Es wird die Versuchsplanung für die Approximation zufälliger Funktionen untersucht, wobei sowohl deterministische Spline-, stochastisch-deterministische Krigingverfahren als auch Regressionsverfahren jeweils unter Verwendung von Ableitungssamples betrachtet werden. Dabei wird das mathematische Gerüst für den Beweis einer allgemeinen Äquivalenz zwischen Kriging- und Splineverfahren entwickelt. Für den in den praktischen Anwendungen wichtigen Fall der Verwendung endlich vieler nichthermitescher Samples wird ein Versuchsplanungsverfahren für zufällige Funktionen mit asymptotisch verschwindender Korrelation entwickelt. Ferner wird der Einfluss von Ableitungen auf die Varianz von (lokalen) Regressionsschätzern untersucht. Schließlich wird ein Verfahren zur Versuchsplanung vorgestellt, das durch Regularisierung mittels gestörter Kovarianzmatrizen Prinzipien der klassischen Versuchsplanung im korrelierten Fall nachahmt.
|
2 |
Effektive Beobachtung von zufälligen Funktionen unter besonderer Berücksichtigung von AbleitungenHoltmann, Markus 14 June 2001 (has links)
Es wird die Versuchsplanung für die Approximation zufälliger Funktionen untersucht, wobei sowohl deterministische Spline-, stochastisch-deterministische Krigingverfahren als auch Regressionsverfahren jeweils unter Verwendung von Ableitungssamples betrachtet werden. Dabei wird das mathematische Gerüst für den Beweis einer allgemeinen Äquivalenz zwischen Kriging- und Splineverfahren entwickelt. Für den in den praktischen Anwendungen wichtigen Fall der Verwendung endlich vieler nichthermitescher Samples wird ein Versuchsplanungsverfahren für zufällige Funktionen mit asymptotisch verschwindender Korrelation entwickelt. Ferner wird der Einfluss von Ableitungen auf die Varianz von (lokalen) Regressionsschätzern untersucht. Schließlich wird ein Verfahren zur Versuchsplanung vorgestellt, das durch Regularisierung mittels gestörter Kovarianzmatrizen Prinzipien der klassischen Versuchsplanung im korrelierten Fall nachahmt.
|
Page generated in 0.0596 seconds