Spelling suggestions: "subject:"spoofing"" "subject:"poofing""
21 |
OCT en phase pour la reconnaissance biométrique par empreintes digitales et sa sécurisation / Phase-based Optical Coherence Tomography (OCT) for a robust and very secure fingerprint biometric recognitionLamare, François 21 March 2016 (has links)
Dans un monde de plus en plus ouvert, les flux de personnes sont amenés à exploser dans les prochaines années. Fluidifier et contrôler ces flux, tout en respectant de fortes contraintes sécuritaires, apparaît donc comme un élément clef pour favoriser le dynamisme économique mondial. Cette gestion des flux passe principalement par la connaissance et la vérification de l’identité des personnes. Pour son aspect pratique et a priori sécurisé, la biométrie, et en particulier celle des empreintes digitales, s’est imposée comme une solution efficace, et incontournable. Néanmoins, elle souffre de deux sévères limitations. La première concerne les mauvaises performances obtenues avec des doigts détériorés. Ces détériorations peuvent être involontaires (travailleurs manuels par exemple), ou bien volontaires, à des fins d’anonymisation. La deuxième concerne les failles de sécurité des capteurs. En particulier, ils sont vulnérables à des attaques avec de fausses empreintes, réalisées par des personnes mal intentionnées dans un but d’usurpation d’identité. D’après nous, ces limitations sont dues à la faible quantité d’information exploitée par les capteurs usuels. Elle se résume souvent à une simple image de la surface du doigt. Pourtant, la complexité biologique des tissus humains est telle qu’elle offre une information très riche, unique, et difficilement reproductible. Nous avons donc proposé une approche d’imagerie, basée sur la Tomographique par Cohérence Optique, un capteur 3D sans contact, permettant de mesurer finement cette information. L’idée majeure de la thèse consiste à étudier divers moyens de l’exploiter, afin de rendre la biométrie plus robuste et vraiment sécurisée / In an increasingly open world, the flows of people are brought to explode in the coming years. Facilitating, streamlining, and managing these flows, by maintaining strict security constraints, therefore represent a key element for the global socio-economic dynamism. This flows management is mainly based on knowledge and verification of person identity. For its practicality and a priori secured, biometrics, in particular fingerprints biometrics, has become an effective and unavoidable solution.Nevertheless, it still suffers from two severe limitations. The first one concerns the poor performances obtained with damaged fingers. This damage can be involuntary (e.g. manual workers) or volunteers, for purposes of anonymity. The second limitation consists in the vulnerability of the commonly used sensors. In particular, they are vulnerable to copies of stolen fingerprints, made by malicious persons for identity theft purpose. We believe that these limitations are due to the small amount of information brought by the usual biometric sensors. It often consists in a single print of the finger surface. However, the biological complexity of human tissue provides rich information, unique to each person, and very difficult to reproduce. We therefore proposed an imaging approach based on Optical Coherence Tomography (OCT), a 3D contactless optical sensor, to finely measure this information. The main idea of the thesis is therefore to explore novel ways to exploit this information in order to make biometrics more robust and truly secured. In particular, we have proposed and evaluated different fingerprint imaging methods, based on the phase of the OCT signal
|
22 |
Contributions to biometrics : curvatures, heterogeneous cross-resolution FR and anti spoofing / Contributions à la biométrie : courbures, reconnaissance du visage sur résolutions transversales hétérologues et anti-spoofingTang, Yinhang 16 December 2016 (has links)
Visage est l’une des meilleures biométries pour la reconnaissance de l’identité de personnes, car l’identification d’une personne par le visage est l’habitude instinctive humaine, et l’acquisition de données faciales est naturelle, non intrusive et bien acceptée par le public. Contrairement à la reconnaissance de visage par l’image 2D sur l’apparence, la reconnaissance de visage en 3D sur la forme est théoriquement plus stable et plus robuste à la variance d’éclairage, aux petits changements de pose de la tête et aux cosmétiques pour le visage. Spécifiquement, les courbures sont les plus importants attributs géométriques pour décrire la forme géométrique d’une surface. Elles sont bénéfiques à la caractérisation de la forme du visage qui permet de diminuer l’impact des variances environnementales. Cependant, les courbures traditionnelles ne sont définies que sur des surfaces lisses. Il est donc nécessaire de généraliser telles notions sur des surfaces discrètes, par exemple des visages 3D représenté par maillage triangulaire, et d’évaluer leurs performances en reconnaissance de visage 3D. En outre, même si un certain nombre d’algorithmes 3D FR avec une grande précision sont disponibles, le coût d’acquisition de telles données de haute résolution est difficilement acceptable pour les applications pratiques. Une question majeure est donc d’exploiter les algorithmes existants pour la reconnaissance de modèles à faible résolution collecté avec l’aide d’un nombre croissant de caméras consommateur de profondeur (Kinect). Le dernier problème, mais non le moindre, est la menace sur sécurité des systèmes de reconnaissance de visage 3D par les attaques de masque fabriqué. Cette thèse est consacrée à l’étude des attributs géométriques, des mesures de courbure principale, adaptées aux maillages triangulaires, et des schémas de reconnaissance de visage 3D impliquant des telles mesures de courbure principale. En plus, nous proposons aussi un schéma de vérification sur la reconnaissance de visage 3D collecté en comparant des modèles de résolutions hétérogènes équipement aux deux résolutions, et nous évaluons la performance anti-spoofing du système de RF 3D. Finalement, nous proposons une biométrie système complémentaire de reconnaissance veineuse de main basé sur la détection de vivacité et évaluons sa performance. Dans la reconnaissance de visage 3D par la forme géométrique, nous introduisons la généralisation des courbures principales conventionnelles et des directions principales aux cas des surfaces discrètes à maillage triangulaire, et présentons les concepts des mesures de courbure principale correspondants et des vecteurs de courbure principale. Utilisant ces courbures généralisées, nous élaborons deux descriptions de visage 3D et deux schémas de reconnaissance correspondent. Avec le premier descripteur de caractéristiques, appelé Local Principal Curvature Measures Pattern (LPCMP), nous générons trois images spéciales, appelée curvature faces, correspondant à trois mesures de courbure principale et encodons les curvature faces suivant la méthode de Local Binary Pattern. Il peut décrire la surface faciale de façon exhaustive par l’information de forme locale en concaténant un ensemble d’histogrammes calculés à partir de petits patchs dans les visages de courbure. Dans le deuxième système de reconnaissance de visage 3D sans enregistrement, appelée Principal Curvature Measures based meshSIFT descriptor (PCM-meshSIFT), les mesures de courbure principales sont d’abord calculées dans l’espace de l’échelle Gaussienne, et les extrèmes de la Différence de Courbure (DoC) sont définis comme les points de caractéristique. Ensuite, nous utilisons trois mesures de courbure principales et leurs vecteurs de courbure principaux correspondants pour construire trois descripteurs locaux pour chaque point caractéristique, qui sont invariants en rotation. [...] / Face is one of the best biometrics for person recognition related application, because identifying a person by face is human instinctive habit, and facial data acquisition is natural, non-intrusive, and socially well accepted. In contrast to traditional appearance-based 2D face recognition, shape-based 3D face recognition is theoretically more stable and robust to illumination variance, small head pose changes, and facial cosmetics. The curvatures are the most important geometric attributes to describe the shape of a smooth surface. They are beneficial to facial shape characterization which makes it possible to decrease the impact of environmental variances. However, exiting curvature measurements are only defined on smooth surface. It is required to generalize such notions to discrete meshed surface, e.g., 3D face scans, and to evaluate their performance in 3D face recognition. Furthermore, even though a number of 3D FR algorithms with high accuracy are available, they all require high-resolution 3D scans whose acquisition cost is too expensive to prevent them to be implemented in real-life applications. A major question is thus how to leverage the existing 3D FR algorithms and low-resolution 3D face scans which are readily available using an increasing number of depth-consumer cameras, e.g., Kinect. The last but not least problem is the security threat from spoofing attacks on 3D face recognition system. This thesis is dedicated to study the geometric attributes, principal curvature measures, suitable to triangle meshes, and the 3D face recognition schemes involving principal curvature measures. Meanwhile, based on these approaches, we propose a heterogeneous cross-resolution 3D FR scheme, evaluate the anti-spoofing performance of shape-analysis based 3D face recognition system, and design a supplementary hand-dorsa vein recognition system based on liveness detection with discriminative power. In 3D shape-based face recognition, we introduce the generalization of the conventional point-wise principal curvatures and principal directions for fitting triangle mesh case, and present the concepts of principal curvature measures and principal curvature vectors. Based on these generalized curvatures, we design two 3D face descriptions and recognition frameworks. With the first feature description, named as Local Principal Curvature Measures Pattern descriptor (LPCMP), we generate three curvature faces corresponding to three principal curvature measures, and encode the curvature faces following Local Binary Pattern method. It can comprehensively describe the local shape information of 3D facial surface by concatenating a set of histograms calculated from small patches in the encoded curvature faces. In the second registration-free feature description, named as Principal Curvature Measures based meshSIFT descriptor (PCM-meshSIFT), the principal curvature measures are firstly computed in the Gaussian scale space, and the extremum of Difference of Curvautre (DoC) is defined as keypoints. Then we employ three principal curvature measures and their corresponding principal curvature vectors to build three rotation-invariant local 3D shape descriptors for each keypoint, and adopt the sparse representation-based classifier for keypoint matching. The comprehensive experimental results based on FRGCv2 database and Bosphorus database demonstrate that our proposed 3D face recognition scheme are effective for face recognition and robust to poses and occlusions variations. Besides, the combination of the complementary shape-based information described by three principal curvature measures significantly improves the recognition ability of system. To deal with the problem towards heterogeneous cross-resolution 3D FR, we continuous to adopt the PCM-meshSIFT based feature descriptor to perform the related 3D face recognition. [...]
|
23 |
Software-based countermeasures to 2D facial spoofing attacksKomulainen, J. (Jukka) 11 August 2015 (has links)
Abstract
Because of its natural and non-intrusive interaction, identity verification and recognition using facial information is among the most active areas in computer vision research. Unfortunately, it has been shown that conventional 2D face recognition techniques are vulnerable to spoofing attacks, where a person tries to masquerade as another one by falsifying biometric data and thereby gaining an illegitimate advantage.
This thesis explores different directions for software-based face anti-spoofing. The proposed approaches are divided into two categories: first, low-level feature descriptors are applied for describing the static and dynamic characteristic differences between genuine faces and fake ones in general, and second, complementary attack-specific countermeasures are investigated in order to overcome the limitations of generic spoof detection schemes.
The static face representation is based on a set of well-known feature descriptors, including local binary patterns, Gabor wavelet features and histogram of oriented gradients. The key idea is to capture the differences in quality, light reflection and shading by analysing the texture and gradient structure of the input face images. The approach is then extended to the spatiotemporal domain when both facial appearance and dynamics are exploited for spoof detection using local binary patterns from three orthogonal planes.
It is reasonable to assume that no generic spoof detection scheme is able to detect all known, let alone unseen, attacks scenarios. In order to find out well-generalizing countermeasures, the problem of anti-spoofing is broken into two attack-specific sub-problems based on whether the spoofing medium can be detected in the provided view or not. The spoofing medium detection is performed by describing the discontinuities in the gradient structures around the detected face. If the display medium is concealed outside the view, a combination of face and background motion correlation measurement and texture analysis is applied. Furthermore, an open-source anti-spoofing fusion framework is introduced and its system-level performance is investigated more closely in order to gain insight on how to combine different anti-spoofing modules.
The proposed spoof detection schemes are evaluated on the latest benchmark datasets. The main findings of the experiments are discussed in the thesis. / Tiivistelmä
Kasvokuvaan perustuvan henkilöllisyyden tunnistamisen etuja ovat luonnollinen vuorovaikutus ja etätunnistus, minkä takia aihe on ollut erittäin aktiivinen tutkimusalue konenäön tutkimuksessa. Valitettavasti tavanomaiset kasvontunnistustekniikat ovat osoittautuneet haavoittuvaisiksi hyökkäyksille, joissa kameralle esitetään jäljennös kohdehenkilön kasvoista positiivisen tunnistuksen toivossa.
Tässä väitöskirjassa tutkitaan erilaisia ohjelmistopohjaisia ratkaisuja keinotekoisten kasvojen ilmaisuun petkuttamisen estämiseksi. Työn ensimmäisessä osassa käytetään erilaisia matalan tason piirteitä kuvaamaan aitojen ja keinotekoisten kasvojen luontaisia staattisia ja dynaamisia eroavaisuuksia. Työn toisessa osassa esitetään toisiaan täydentäviä hyökkäystyyppikohtaisia vastakeinoja, jotta yleispätevien menetelmien puutteet voitaisiin ratkaista ongelmaa rajaamalla.
Kasvojen staattisten ominaisuuksien esitys perustuu yleisesti tunnettuihin matalan tason piirteisiin, kuten paikallisiin binäärikuvioihin, Gabor-tekstuureihin ja suunnattujen gradienttien histogrammeihin. Pääajatuksena on kuvata aitojen ja keinotekoisten kasvojen laadun, heijastumisen ja varjostumisen eroavaisuuksia tekstuuria ja gradienttirakenteita analysoimalla. Lähestymistapaa laajennetaan myös tila-aika-avaruuteen, jolloin hyödynnetään samanaikaisesti sekä kasvojen ulkonäköä ja dynamiikkaa irroittamalla paikallisia binäärikuvioita tila-aika-avaruuden kolmelta ortogonaaliselta tasolta.
Voidaan olettaa, ettei ole olemassa yksittäistä yleispätevää vastakeinoa, joka kykenee ilmaisemaan jokaisen tunnetun hyökkäystyypin, saati tuntemattoman. Näin ollen työssä keskitytään tarkemmin kahteen hyökkäystilanteeseen. Ensimmäisessä tapauksessa huijausapuvälineen reunoja ilmaistaan analysoimalla gradienttirakenteiden epäjatkuvuuksia havaittujen kasvojen ympäristössä. Jos apuvälineen reunat on piilotettu kameran näkymän ulkopuolelle, petkuttamisen ilmaisu toteutetaan yhdistämällä kasvojen ja taustan liikkeen korrelaation mittausta ja kasvojen tekstuurianalyysiä. Lisäksi työssä esitellään vastakeinojen yhdistämiseen avoimen lähdekoodin ohjelmisto, jonka avulla tutkitaan lähemmin menetelmien fuusion vaikutuksia.
Tutkimuksessa esitetyt menetelmät on kokeellisesti vahvistettu alan viimeisimmillä julkisesti saatavilla olevilla tietokannoilla. Tässä väitöskirjassa käydään läpi kokeiden päähavainnot.
|
24 |
Ultraportable FPGA based advanced GPS spoofer / Ultraportabel FPGA-baserad avancerad GPS-spooferJiang, Wenhao January 2023 (has links)
The increasing threat of Global Navigation Satellite System (GNSS) spoofing attacks necessitates the development of robust defense mechanisms and the testing of potential vulnerabilities. In this project, we present the development and testing of an ultraportable Global Positioning System (GPS) spoofer using an Software Defined Radio (SDR) platform, BladeRF. The spoofer enables users to initiate synchronous spoofing attacks with kilobyte-level files, facilitating synchronous attacks. The project comprises two primary components: an acquisition block based on a serial-search algorithm and a GPS signal simulator. The design emphasizes module reuse, allowing for cost-effective implementation on a relatively small and affordable Field Programmable Gate Arrays (FPGA). This project provides a foundation for both GPS spoofing research and defense algorithm testing, proving the ease of developing a spoofer. / Det ökade hotet från GNSS-förfalskningsattacker kräver utveckling av robusta försvarsmekanismer och testning av potentiella sårbarheter. I det här projektet presenterar vi utvecklingen och testningen av en ultraportabel GPSförfalskare med hjälp av en mjukvarudefinierad radio, BladeRF. Förfalskaren möjliggör att användare kan initiera synkrona förfalskningsattacker med kilobytenivåfiler, vilket underlättar synkrona attacker. Projektet består av två primära komponenter: en samplingsblock baserad på en sekventiell sökalgoritm och en GPS-signalsimulator. Designen betonar återanvändning av moduler, vilket möjliggör kostnadseffektiv implementering på en relativt liten och prisvärd FPGA. Detta projekt ger en grund för både forskning om GPS-förfalskning och testning av försvarsalgoritmer och visar på enkelheten att utveckla en förfalskare.
|
25 |
Spoofing Mitigation Using Multiple GNSS-ReceiversStenberg, Niklas January 2019 (has links)
Global Navigation Satellite Systems (GNSS) are used in a multitude of civilian as well as security related applications. GNSS-receivers are vulnerable to different types of spoofing attacks where the receiver is ``tricked'' to provide false position and time estimates. These attacks could have serious implications; hence, it is important to develop GNSS-receivers that are robust against spoofing attacks. This thesis investigates the use of multiple GNSS-receivers that exchange information such as pseudorange or carrier phase measurements in order to perform spoofing mitigation. It has previously been shown that carrier phase measurements from multiple receivers can be used to identify spoofing signals. The focus in this thesis is on investigating the possibility of using pseudorange measurements from two receivers to perform spoofing mitigation. The use of pseudoranges to perform spoofing mitigation is compared to the use of carrier phases. The spoofing attack is assumed to be performed using a single transmission antenna. This is exploited in order to identify the spoofing signals. The spoofing mitigation algorithms compute, for a pair of receivers, either pseudorange or carrier phase double differences. A double difference is the difference of two single differences for a satellite pair, where the single difference is the difference of pseudoranges or carrier phases measured from one satellite by a pair of receivers. The spoofing mitigation involves the identification of spoofing signals based on these calculated pseudorange or carrier phase double differences. The measurements obtained from identified spoofing signals are not used by the receivers in subsequent computations of position, velocity and time, thereby mitigating the effects of the spoofing attack. The spoofing mitigation algorithms were evaluated with the help of the software-defined GNSS-receiver GNSS-SDR, which was modified to acquire and track both authentic signals and spoofed signals. The spoofing mitigation algorithms were implemented and evaluated in MATLAB. Simulated meaconing attacks were created using a Spirent GNSS simulator. The evaluations indicate that spoofing mitigation is possible using pseudorange measurements from two receivers. However, the performance of the spoofing mitigation algorithms deteriorates for short distances between the receivers when pseudorange measurements are used. The use of carrier phase measurements for spoofing mitigation appears to be more appropriate for short distances between the receivers. The use of pseudoranges enabled quite fast identification of the spoofing signals for larger distances between the receivers. Most spoofing signals are identified within 30 seconds using pseudoranges and for distances larger than 20 meter between the receivers.
|
26 |
Protection of 2D face identification systems against spoofing attacks / Protection des systèmes d'identification facial face à la fraudeEdmunds, Taiamiti 23 January 2017 (has links)
Les systèmes d’identification faciale sont en plein essor et se retrouvent de plus en plus dans des produits grand public tels que les smartphones et les ordinateurs portables. Cependant, ces systèmes peuvent être facilement bernés par la présentation par exemple d’une photo imprimée de la personne ayant les droits d’accès au système. Cette thèse s’inscrit dans le cadre du projet ANR BIOFENCE qui vise à développer une certification des systèmes biométriques veine, iris et visage permettant aux industriels de faire valoir leurs innovations en termes de protection. L’objectif de cette thèse est double, d’abord il s’agit de développer des mesures de protection des systèmes 2D d’identification faciale vis à vis des attaques connues à ce jour (photos imprimées, photos ou vidéos sur un écran, masques) puis de les confronter à la méthodologie de certification développée au sein du projet ANR. Dans un premier temps, un état de l’art général des attaques et des contremesures est présenté en mettant en avant les méthodes algorithmiques (« software ») par rapport aux méthodes hardware. Ensuite, plusieurs axes sont approfondis au cours de ce travail. Le premier concerne le développement d’une contremesure basée sur une analyse de texture et le second concerne le développement d’une contre-mesure basée sur une analyse de mouvement. Ensuite, une modélisation du processus de recapture pour différencier un faux visage d’un vrai est proposée. Une nouvelle méthode de protection est développée sur ce concept en utilisant les données d'enrolment des utilisateurs et un premier pas est franchi dans la synthèse d'attaque pour un nouvel utilisateur à partir de sa donnée d'enrolment. Enfin, la méthodologie de certification développée pour les systèmes à empreintes digitales est évaluée pour les systèmes d'identification facial. / Face identification systems are growing rapidly and invade the consumer market with security products in smartphones, computers and banking. However, these systems are easily fooled by presenting a picture of the person having legitimate access to the system. This thesis is part of the BIOFENCE project which aim to develop a certification of biometric systems in order for industrials to promote their innovations in terms of protection. Our goal is to develop new anti-spoofing countermeasures for 2D face biometric systems and to evaluate the certification methodology on protected systems. First, a general state of the art in face spoofing attack forgery and in anti-spoofing protection measures is presented. Then texture-based countermeasures and motion-based countermeasures are investigated leading to the development of two novel countermeasures. Then, the recapturing process is modelled and a new fake face detection approach is proposed based on this model. Taking advantage of enrolment samples from valid users, a first step toward the synthesis of spoofing attacks for new users is taken. Finally, the certification methodology originally developed for fingerprint technology is evaluated on face biometric systems.
|
27 |
Face presentation attack detection using texture analysisBoulkenafet, Z. (Zinelabidine) 15 May 2018 (has links)
Abstract
In the last decades, face recognition systems have evolved a lot in terms of performance. As a result, this technology is now considered as mature and is applied in many real world applications from border control to financial transactions and computer security. Yet, many studies show that these systems suffer from vulnerabilities to spoofing attacks, a weakness that may limit their usage in many cases. A face spoofing attack or presentation attack occurs when someone tries to masquerade as someone else by presenting a fake face in front of the face recognition camera. To protect the recognition systems against attacks of this kind, many face anti-spoofing methods have been proposed. These methods have shown good performances on the existing face anti-spoofing databases. However, their performances degrade drastically under real world variations (e.g., illumination and camera device variations). In this thesis, we concentrate on improving the generalization capabilities of the face anti-spoofing methods with a particular focus on the texture based techniques.
In contrast to most existing texture based methods aiming at extracting texture features from gray-scale images, we propose a joint color-texture analysis. First, the face images are converted into different color spaces. Then, the feature histograms computed over each image band are concatenated and used for discriminating between real and fake face images. Our experiments conducted on three color spaces: RGB, HSV and YCbCr show that extracting the texture information from separated luminance chrominance color spaces (HSV and YCbCr) yields to better performances compared to gray-scale and RGB image representations. Moreover, to deal with the problem of illumination and image-resolution variations, we propose to extract this texture information from different scale images. In addition to representing the face images in different scales, the multi-scale filtering methods also act as pre-processing against factors such as noise and illumination.
Although our obtained results are better than the state of the art, they are still far from the requirements of real world applications. Thus, to help in the development of robust face anti-spoofing methods, we collected a new challenging face anti-spoofing database using six camera devices in three different illumination and environmental conditions. Furthermore, we have organized a competition on the collected database where fourteen face anti-spoofing methods have been assessed and compared. / Tiivistelmä
Kasvontunnistusjärjestelmien suorituskyky on parantunut huomattavasti viime vuosina. Tästä syystä tätä teknologiaa pidetään nykyisin riittävän kypsänä ja käytetään jo useissa käytännön sovelluksissa kuten rajatarkastuksissa, rahansiirroissa ja tietoturvasovelluksissa. Monissa tutkimuksissa on kuitenkin havaittu, että nämä järjestelmät ovat myös haavoittuvia huijausyrityksille, joissa joku yrittää esiintyä jonakin toisena henkilönä esittämällä kameralle jäljennöksen kohdehenkilön kasvoista. Tämä haavoittuvuus rajoittaa kasvontunnistuksen laajempaa käyttöä monissa sovelluksissa. Tunnistusjärjestelmien turvaamiseksi on kehitetty lukuisia menetelmiä tällaisten hyökkäysten torjumiseksi. Nämä menetelmät ovat toimineet hyvin tätä tarkoitusta varten kehitetyillä kasvotietokannoilla, mutta niiden suorituskyky huononee dramaattisesti todellisissa käytännön olosuhteissa, esim. valaistuksen ja käytetyn kuvantamistekniikan variaatioista johtuen. Tässä työssä yritämme parantaa kasvontunnistuksen huijauksen estomenetelmien yleistämiskykyä keskittyen erityisesti tekstuuripohjaisiin menetelmiin.
Toisin kuin useimmat olemassa olevat tekstuuripohjaiset menetelmät, joissa tekstuuripiirteitä irrotetaan harmaasävykuvista, ehdotamme väritekstuurianalyysiin pohjautuvaa ratkaisua. Ensin kasvokuvat muutetaan erilaisiin väriavaruuksiin. Sen jälkeen kuvan jokaiselta kanavalta erikseen lasketut piirrehistogrammit yhdistetään ja käytetään erottamaan aidot ja väärät kasvokuvat toisistaan. Kolmeen eri väriavaruuteen, RGB, HSV ja YCbCr, perustuvat testimme osoittavat, että tekstuuri-informaation irrottaminen HSV- ja YCbCr-väriavaruuksien erillisistä luminanssi- ja krominanssikuvista parantaa suorituskykyä kuvien harmaasävy- ja RGB-esitystapoihin verrattuna. Valaistuksen ja kuvaresoluution variaation takia ehdotamme myös tämän tekstuuri-informaation irrottamista eri tavoin skaalatuista kuvista. Sen lisäksi, että itse kasvot esitetään eri skaaloissa, useaan skaalaan perustuvat suodatusmenetelmät toimivat myös esikäsittelynä sellaisia suorituskykyä heikentäviä tekijöitä vastaan kuten kohina ja valaistus.
Vaikka tässä tutkimuksessa saavutetut tulokset ovat parempia kuin uusinta tekniikkaa edustavat tulokset, ne ovat kuitenkin vielä riittämättömiä reaalimaailman sovelluksissa tarvittavaan suorituskykyyn. Sen takia edistääksemme uusien robustien kasvontunnistuksen huijaamisen ilmaisumenetelmien kehittämistä kokosimme uuden, haasteellisen huijauksenestotietokannan käyttäen kuutta kameraa kolmessa erilaisessa valaistus- ja ympäristöolosuhteessa. Järjestimme keräämällämme tietokannalla myös kansainvälisen kilpailun, jossa arvioitiin ja verrattiin neljäätoista kasvontunnistuksen huijaamisen ilmaisumenetelmää.
|
28 |
Reading subtle information from human facesLi, X. (Xiaobai) 08 September 2017 (has links)
Abstract
The face plays an important role in our social interactions as it conveys rich sources of information. We can read a lot from one face image, but there is also information we cannot perceive without special devices. The thesis concerns using computer vision methodologies to analyse two kinds of subtle facial information that can hardly be perceived by naked eyes: the micro-expression (ME), and the heart rate (HR).
MEs are rapid, involuntary facial expressions which reveal emotions people do not intend to show. It is difficult for people to perceive MEs as they are too fast and subtle, thus automatic ME analysis is valuable work which may lead to important applications. In the thesis, the progresses of ME studies are reviewed, and four parts of work are described. 1) We introduce the first spontaneous ME database, the SMIC. The lacking of data is hindering ME analysis research, as it is difficult to collect spontaneous MEs. The protocol for inducing and annotating SMIC is introduced to help future ME collections. 2) A framework including three features and a video magnification process is introduced for ME recognition, which outperforms other state-of-the-art methods on two ME databases. 3) An ME spotting method based on feature difference analysis is described, which can spot MEs from spontaneous long videos. 4) An automatic ME analysis system (MESR) was proposed for firstly spotting and then recognising MEs.
The HR is an important indicator of our health and emotional status. Traditional HR measurements require skin-contact which cannot be applied remotely. We propose a method which can counter for illumination changes and head motions and measure HR remotely from color facial videos. We also apply the method for solving the face anti-spoofing problem. We show that the pulse-based feature is more robust than traditional texture-based features against unseen mask spoofs. We also show that the proposed pulse-based feature can be combined with other features to build a cascade system for detecting multiple types of attacks.
At last, we summarize the contributions of the work, and propose future plans about ME and HR studies based on limitations of the current work. It is also planned to combine the ME and HR (maybe also other subtle signals from face) to build a multimodal system for affective status analysis. / Tiivistelmä
Kasvot ovat monipuolinen informaatiolähde ja keskeinen ihmisten välisessä vuorovaikutuksessa. Pystymme päättelemään paljon yhdestäkin kasvokuvasta, mutta kasvoissa on paljon tietoa, jota ei pysty irrottamaan ilman erityiskeinoja. Tässä työssä analysoidaan konenäöllä ihmiselle vaikeasti havaittavaa tietoa: mikroilmeitä ja sydämen sykettä.
Tahdosta riippumattomat mikroilmeet paljastavat tunteita, joita ihmiset pyrkivät piilottamaan. Mikroilmeiden havaitseminen on vaikeaa niiden nopeuden ja pienuuden vuoksi, joten automaattinen analyysi voi johtaa uusiin merkittäviin sovelluksiin. Tämä työ tarkastelee mikroilmetutkimuksen edistysaskeleita ja sisältää neljä uutta tulosta. 1) Spontaanien mikroilmeiden tietokanta (Spontaneous MIcroexpression Corpus, SMIC). Spontaanien mikroilmeiden aiheuttaminen datan saamiseksi on oma haasteensa. SMIC:n keräämisessä ja mikroilmeiden annotoinnissa käytetty menettely on kuvattu myöhemmän datan keruun ohjeistukseksi. 2) Aiempia mikroilmeiden tunnistusmenetelmiä paremmaksi kahden testitietokannan avulla todennettu ratkaisu, joka käyttää kolmea eri piirrettä ja videon suurennusta. 3) Piirre-eroanalyysiin perustuva mikroilmeiden havaitsemismenetelmä, joka havaitsee ne pitkistä realistisista videoista. 4) Automaattinen analyysijärjestelmä (Micro-Expression Spotting and Recognition, MESR), jossa mikroilmeet havaitaan ja tunnistetaan.
Sydämen syke on tärkeä terveyden ja tunteiden indikoija. Perinteiset sykkeenmittausmenetelmät vaativat ihokontaktia, eivätkä siten toimii etäältä. Tässä työssä esitetään sykkeen videolta pienistä värimuutoksista mittaava menetelmä, joka sietää valaistusmuutoksia ja sallii pään liikkeet. Menetelmä on monikäyttöinen ja sen sovelluksena kuvataan todellisten kasvojen varmentaminen sykemittauksella. Tulokset osoittavat sykepiirteiden toimivan perinteisiä tekstuuripiirteitä paremmin uudenlaisia naamarihuijauksia vastaan. Syketietoa voidaan myös käyttää osana sarjatyyppisissä ratkaisuissa havaitsemaan useanlaisia huijausyrityksiä.
Työn yhteenveto keskittyy suunnitelmiin parantaa mikroilmeiden ja sydämen sykkeen analyysimenetelmiä nykyisen tutkimuksen rajoitteiden pohjalta. Tavoitteena on yhdistää mikroilmeiden ja sydämen sykkeen analyysit, sekä mahdollisesti muuta kasvoista saatavaa tietoa, multimodaaliseksi affektiivisen tilan määrittäväksi ratkaisuksi.
|
29 |
Implementation of GNSS/GPS Navigation and its Attacks in UAVSim TestbedJahan, Farha January 2015 (has links)
No description available.
|
30 |
Wireless Network Physical Layer Security with Smart AntennaWang, Ting 17 June 2013 (has links)
Smart antenna technique has emerged as one of the leading technologies for enhancing the quality of service in wireless networks. Because of its ability to concentrate transmit power in desired directions, it has been widely adopted by academia and industry to achieve better coverage, improved capacity and spectrum efficiency of wireless communication systems. In spite of its popularity in applications of performance enhancement, the smart antenna's capability of improving wireless network security is relatively less explored. This dissertation focuses on exploiting the smart antenna technology to develop physical layer solutions to anti-eavesdropping and location security problems.
We first investigate the problem of enhancing wireless communication privacy. A novel scheme named "artificial fading" is proposed, which leverages the beam switching capability of smart antennas to prevent eavesdropping attacks. We introduce the optimization strategy to design a pair of switched beam patterns that both have high directional gain to the intended receiver. Meanwhile, in all the other directions, the overlap between these two patterns is minimized. The transmitter switches between the two patterns at a high frequency. In this way, the signal to unintended directions experiences severe fading and the eavesdropper cannot decode it. We use simulation experiments to show that the artificial fading outperforms single pattern beamforming in reducing the unnecessary coverage area of the wireless transmitter.
We then study the impact of beamforming technique on wireless localization systems from the perspectives of both location privacy protection and location spoofing attack.
For the location privacy preservation scheme, we assume that the adversary uses received signal strength (RSS) based localization systems to localize network users in Wireless LAN (WLAN). The purpose of the scheme is to make the adversary unable to uniquely localize the user when possible, and otherwise, maximize error of the adversary's localization results. To this end, we design a two-step scheme to optimize the beamforming pattern of the wireless user's smart antenna. First, the user moves around to estimate the locations of surrounding access points (APs). Then based on the locations of the APs, pattern synthesis is optimized to minimize the number of APs in the coverage area and degenerate the localization precision. Simulation results show that our scheme can significantly lower the chance of being localized by adversaries and also degrade the location estimation precision to as low as the coverage range of the AP that the wireless user is connected to.
As personal privacy preservation and security assurance at the system level are always conflictive to some extent, the capability of smart antenna to intentionally bias the RSS measurements of the localization system also potentially enables location spoofing attacks. From this aspect, we present theoretical analysis on the feasibility of beamforming-based perfect location spoofing (PLS) attacks, where the attacker spoofs to a target fake location by carefully choosing the beamforming pattern to fool the location system. The PLS problem is formulated as a nonlinear feasibility problem, and due to its intractable nature, we solve it using semidefinite relaxation (SDR) in conjunction with a heuristic local search algorithm. Simulation results show the effectiveness of our analytical approach and indicate the correlation between the geometry of anchor deployment and the feasibility of PLS attacks. Based on the simulation results, guidelines for guard against PLS attacks are provided. / Ph. D.
|
Page generated in 0.0598 seconds